CYBERSECURITY METHODOLOGY

a RESOLVD key exploitable result

DESCRIPTION

Cybersecurity threat modelling strategy that ensures security throughout system development lifecycle:

Phase 1:	Phase 3:	Phase 5:
Requirements	Implementation	Release
Phase 2:	Phase 4:	Phase 6:
Design	Verification	Support & Service

Where the Cybersecurity methodology fits in the RESOLVD solution, see model on page 2

USP

Combined risk assessment and threat modeling to generate a holistic set of security requirements for critical infrastructures that are best suited for additional sophisticated probabilistic formal verification methods that can provide security guarantees through mathematical and logical methods.

DEVELOPER

TARGET CUSTOMERS

DSO, automotive industry, critical infrastructure providers

PROBLEM ADDRESSED

Damage caused by cyber-attacks causes considerable costs to critical infrastructure providers and the larger society they serve, damages the reputation and can raise critical safety threats.

VALUE PROPOSITION

The risk based cyber threat modelling tool ensures trustworthy security throughout all the development lifecycle of critical infrastructure.

EXPLOITATION AMBITION

JR is an independent research institution and has a proven track record in increasing cybersecurity using a risk-based modelling process in critical infrastructure. They plan to utilise this as a participant in further R&I in new industries and intend to further exploit this approach with the help of formal verification.

RESOLVD Next generation LV grid management

WHY IS THIS RELEVANT TO YOU?

The RESOLVD H2020 project is a 42 month Research & Innovation project that proposes hardware and software technologies that address European DSOs challenges in accommodating an increased presence of renewables in LV grids.

With the project now coming to a close, a consortium of leading institutions and technology developers have developed the next generation solutions to meet tomorrow's challenges and these are being tested in a real-life pilot in Catalonia, Spain.

DSO CHALLENGES

Fault detection and self-healing

Low resolution grid observability

Congestion and voltage compliance

Uncontrolled islanding

Continuity of supply after fault

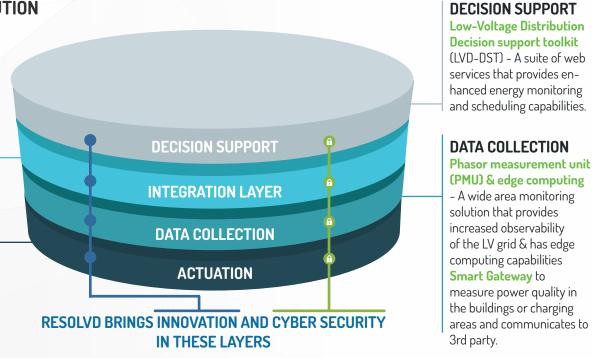
Power quality issues

Technical power loses

Cyber Security

Technical power loses

THE RESOLVD SOLUTION


INTEGRATION LAYER

Enterprise Service Bus (ESB) and Data Management
Platform - Integration
middleware software that
facilitates interaction among
various software applications
and manages data exchange,
analytics and visualisation.

ACTUATION

Power electronic device (PED) Integrates multiple battery types and manages their dynamic energy and power flows.

CONTACT

HEIDI TUISKULA | Innovation Manager for the RESOLVD project | Smart Innovation Norway | heidi.tuiskula@smartinnovationnorway.com