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Executive Summary 

This report summarizes the work done in regard of the development of the so-called Power 
Sharing Algorithm (PSA). The PSA is one of the algorithms composing the local controller of the 
Power Electronics Device (PED). The PED development is the main goal of Work Package 2 of 
the RESOLVD project. 

The PSA receives a time-dependent power profile set-point from the network operator, and 
distributes it among the different battery types embedded into the PED. This way, it triggers an 
internal power sharing, based on the criteria of maximum performance and minimum battery 
degradation. Following contents summarizes the contents in regard of the development of the 
PSA, all included in this deliverable 2.4. 

The main objective of deliverable 2.4 is to the report the design the PSA, evaluate its performance 
and assess its integration as one of the modules of the Intelligent Local Energy Manager (ILEM) 
software, which is the software in charge of connecting the Power Electronics Device (PED) with 
the rest of the power network. As specific objectives, the report considers: 

i) The formulation of the PSA, as an optimization mathematical problem that can be recurrently 
executed as part of ILEM, providing real time power set-points for the different batteries 
embedded into the PED. 

ii) The development of a simulation environment for evaluating the dynamic behavior of the 
batteries embedded into the PED while driven by the set-points from the PSA. 

iii) The evaluation of the performance of the PSA in terms of managing the PED to follow the time-
dependent power profile set-point calculated by the network operator, while ensuring minimum 
battery degradation. 

iv) The integration of the PSA as part of the ILEM, also addressing the cybersecurity aspect. 

As defined in previous tasks of Work Package 2, the PED holds two battery types. The first one 
is a lithium-ion pack, rated at 30 kWh and nominal voltage around 345.6 V. The second one is a 
lead-acid pack, providing about 14 kWh and with nominal voltage about 240 V. As a result, the 
PED holds a total of 44 kWh in energy. The power ratings of the PED are 75 kVA at grid side. 
However, the power that each battery type can exchange is bounded at 20 kW, by the associated 
dc-dc converter connected at their respective terminals. 

To evaluate at the design stage the dynamic behavior of the PED and embedded batteries, a 
simulation environment in Matlab Simulink is included in the section 2 of the deliverable. This 
simulation environment will serve afterwards to check the accuracy of the PSA (and of the 
algorithm executed by the network operator in charge of providing the power set-points to the 
PED, the Grid Operation Scheduler) while estimating the SOC of the batteries. 

For the characterization and modelling of the lithium-ion battery pack in the PSA, laboratory tests 
were carried out. In there, the pack was connected to a grid connected bidirectional voltage 
source converter. The ratings of this converter are 50 kVA in power and up to 800 V dc voltage. 
At the grid side, the converter can be connected to a three-phase 400 V ac network. The converter 
communicates with the battery pack through a MODBUS RS485 protocol. Through this converter, 
a train of charging and discharging current pulses were applied to the battery. As a consequence, 
the battery was fully charged and discharged. Then, through the application of the least-squares 
estimation theory (explained in Annex II), the parameters of the battery model were found. This 
exercise is necessary because of the little information usually provided in manufacturer’s 
datasheet for such high-tech lithium-ion packs. Tests results are reported in section 2.2.1 of this 
deliverable. 

After the development of the simulation environment and the description of the tests for the 
characterization of the battery packs, the formulation of the PSA is presented in section 3. 
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The hybridization of an energy storage system, so the inclusion of different types of batteries, 
permits to take advantage of the main performances of each one depending on the service to 
provide. However, to do so, the heterogeneous grouping of batteries must be managed optimally. 
Such exercise is solved through a mathematical optimization (i.e. the PSA) using diverse and 
representative time series data on the grid power flows. 

The PSA is formulated as a multi-objective function to be minimized. The objective function is: 

𝑧 𝛼
𝑧
𝑍∗ 𝛽

𝑧
𝑍∗ 𝛾

𝑧
𝑍∗   

The terms 𝑍∗, 𝑍  
∗ and 𝑍∗  are determined after running 3 optimization problems. The first is to 

minimize the discrepancy between the power output of the PED and the power scheduling profile 
(𝛼 1, 𝛽 𝛾 0 . The corresponding optimal solution is 𝑍∗. The second is to minimize the 
degradation cost for the batteries as function of excessive driving currents ( 𝛽 1, 𝛼 𝛾 0 . 
The corresponding optimal solution is 𝑍∗ . The third is to minimize the degradation cost for the 
batteries as function of excessive depth of discharge (𝛾 1, 𝛼 𝛽 0). The corresponding 
optimal solution is 𝑍∗ . So, each time the PSA is executed (e.g. in an hourly basis), it is in fact 
solved four times. Tests performed and reported in this deliverable indicated that considering 
time-dependent power profile series of 24 set-points, the time needed for carrying out such four 
executions for the PSA is just few seconds at most. Thus, formulating this as a multi-objective 
criteria problem, it becomes feasible to be applied on field for the purposes of the project. 

Costs 𝑧  and 𝑧  are formulated considering some parameters weighting the degradation of 
lithium-ion and lead-acid batteries in terms of the driving currents and of the depth of discharge. 
This approach is motivated by a literature review on battery degradation mechanisms, from which, 
in general terms, we can conclude that: 

i) The higher the depth of discharge, the lower the lifespan of batteries. This has sense, 
since high depth of discharge means to utilize most of the active material in battery electrodes for 
electrochemical reactions and thus, batteries become degraded. 

ii) The higher the current rate, the lower the lifespan of batteries. This also has sense, since 
the higher the current, the higher also the density of electrochemical reactions happening in the 
electrodes and thus degrading them. 

So, a comparison of degradation mechanisms for lithium-ion and lead-acid batteries on the above 
mentioned terms serve to weight the parameters associated to costs 𝑧  and 𝑧 . This work is 
included in section 3.1. 

Then, section 4, presents a study case for the performance evaluation of the PSA. Two different 
exercises are carried out. The first one aims to test the PSA while driven by an arbitrary, academic 
time-dependent power profile set-point. The adoption of such academic power set-point eases 
the performance evaluation of the PSA while letting the PED to develop a power as close as 
possible to the demand, while also minimizing batteries degradation. The second exercise aims 
to test the PSA while driven by a realistic time-dependent power profile set-point. This profile is 
solved by the power network operator, addressing the needs of the grid for the next 24 hours. 
This second exercise aims to also reproduce the interaction between the Grid Operation 
Scheduler, carried out by the network operator, and the PSA. 

For such second exercise, an iterative procedure is needed, and this is described through the 
following steps. The first step of this iterative process is the estimation of the future State of 
Charge of batteries, SOC. The partials and averaged SOCs are estimated taking into account the 
current power set-points and the current SOCs. Note that the partials SOCs corresponds to lithium 
and lead-acid batteries. The second step initializes when the averaged SOC is forecasted. The 
Grid Operation Scheduler is executed according to the most recent consumption and generation 
forecasts. Posteriorly, the energy schedule for the next 24 hours is requested to the PED. The 
third step is mainly the power sharing algorithm which takes this energy schedule and tries to 
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optimize it to ensure the requested power and procure to take care of batteries. Finally, it defines 
how much energy comes from lithium and lead-acid batteries. Simultaneously, the battery 
behavior simulation is performed in order to calculate the real SOCs when the batteries perform 
the requested energy set-points. The results are the point of departure for the estimation of future 
SOCs. 

Results of such iterative process show how the PSA manages the charging and discharging of 
the batteries following the power set-points from the network operator. Little discrepancy between 
the requested power and the developed by the PED is noticed. In fact, the output of the PED 
mostly fits with the requested value for most of the evaluated time periods, and for those 
presenting discrepancies, the error with respect to power demand is lower than 10%. Such 
performance validates the interaction between the management algorithm carried out by the 
network operator, i.e. the Grid Operation Scheduler, and the PSA. 

The interaction between both algorithms is also assessed in terms of the discrepancies between 
the estimated SOCs. The problem here is that the PSA models and estimates the SOC for each 
of the batteries embedded into the PED, while the Grid Operation Scheduler considers an 
aggregated SOC for the set of batteries. This accounts for a loss of accuracy in SOC estimation. 
Anyhow, performance of both algorithms in SOC estimation was proved to be quite accurate. In 
particular, the error for both algorithms in SOC estimation (PSA and Grid Operation Scheduler) 
was below 10% for almost all evaluated cases. 

After section 2, 3 and 4, which are central parts for the PSA development and testing, the 
deliverable includes section 5, in which the integration of the PSA into the ILEM is described. 
Also, the cybersecurity aspect is assessed, motivated by the fact that the ILEM is actually 
exchanging information with other agents of the network. The PSA was defined as a module of 
the software ILEM, which manages the whole PED. The way it interacts with the rest of the 
modules of ILEM was presented in section 5 in a comprehensive and synthetic way. 

The aim of the cybersecurity check is the identification of typical application and configuration 
vulnerabilities of the public available services. Section 5.2 gives an overview about the systems 
which were investigated, describes the testing approach and lists the recommendations and 
actions to take. This security audit was based on a grey box approach where the partner of the 
RESOLVD project, Joanneum Research, investigated the provided IP address on a single host. 
This host is secured by a whitelisting approach, which is a good and secure way to prevent public 
access. Therefore, it was not possible to access it until the administrators whitelisted the IP 
address which were used for the audit. The security audit identified a total of one low and two 
medium vulnerabilities. These vulnerabilities were in regard of SSH user enumeration; 
unencrypted communications; and weak directory listing. These vulnerabilities are considered as 
recommendations for the field implementation of the PED. 
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1. Introduction 

This report summarizes the work done in regard of the development of the so-called Power 
Sharing Algorithm (PSA, hereinafter). Based on a time-dependent power profile set-point received 
by the Power Electronics Device (PED), the PSA distributes it among the different battery types 
embedded in. This way, it triggers an internal power sharing, based on the criteria of maximum 
performance and minimum battery degradation. Figure 1 depicts the main subsystems of the 
PED, depicting the power electronic modules, the batteries and the ILEM, in which the PSA is 
embedded.  

 

Figure 1. The Power Electronics Device (PED). 
 

Following contents succinctly states the objectives of the report and its structure. 

1.1. Objectives 

The main objective of the report is to design the PSA, evaluate its performance and assess its 
integration as one of the modules of the Intelligent Local Energy Manager (ILEM) software, which 
is the software in charge of connecting the Power Electronics Device (PED) with the rest of the 
power network. As specific objectives, the report considers: 

i) The formulation of the PSA, as an optimization mathematical problem that can be recurrently 
executed as part of ILEM, providing real time power set-points for the different batteries 
embedded into the PED. 

ii) The development of a simulation environment for evaluating the dynamic behavior of the 
batteries embedded into the PED while driven by the set-points from the PSA. 
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iii) The evaluation of the performance of the PSA in terms of managing the PED to follow the time-
dependent power profile set-point calculated by the network operator, while ensuring minimum 
battery degradation. 

iv) The presentation of the integration of the PSA as part of the ILEM, also addressing 
cybersecurity aspect. 

The scope of the report is bounded by the level of PED hardware development at the time of 
writing it. The PED prototype is to be finished during the second year of RESOLVD project. 
Consequently, the performance evaluation of the PSA on field is addressed in other tasks of the 
project and reported in associated deliverables. For the present work, the dynamic behavior of 
the PED is estimated from simulations through a simulation platform in Matlab Simulink. 
Nevertheless, the methodology for the work presented in this report does already include 
laboratory tests for the characterization of one of the battery packs to be embedded into the PED. 

The target audience for this report is composed by engineers and researchers in the field of 
energy storage and power systems. 

1.2. Report structure 

Section 2 introduces the PED as a hybrid energy storage system. The concept of power sharing 
is defined and then, a simulation platform for the different subsystems of the PED, i.e. power 
electronics and batteries, is presented. Further, the electrical environment at which the PED is 
connected to, so the rural distribution grid of EyPESA is introduced. Further even, a typical shape 
of the time-dependent power profile set-point for the PED while connected to this power network 
is depicted. Altogether aims to provide a complete and high-level picture of the technology and 
the adopted testing scenario. 

Section 3 addresses the formulation of the PSA, as a mathematical optimization problem. The 
input data, decision variables, problem constraints and objective function are presented. 

Section 4, after describing the technology, testing scenario and the PSA, describes a study case 
for performance evaluation. The PSA is firstly evaluated adopting an arbitrary, academic time-
dependent power profile setpoint, so the way it adjusts the output of the PED in time and 
considering the degradation of the batteries can be easily appreciated. Then, the PSA is tested 
as it were actually implemented in the PED and working on field. This way, it recurrently receives 
time-dependent power profile setpoint from the network operator, determines the output of the 
different batteries included in the PED, and interact back with network operator to perform the 
next iteration. 

After the performance evaluation, Section 5 presents how the PSA is integrated into the ILEM 
software. This software acts as the bridge between the PED and the rest of the network and also 
includes various modules for the internal management of the PED. Finally, as receiving 
exogenous signals and sending back information to other actors of the network, cybersecurity 
aspect is assessed also in this section. 

Section 6 summarizes the main conclusions of the work. 

Finally, three annexes complete the document, detailing on the modeling of the PED, the testing 
procedure of the lithium-ion battery pack in laboratory for its parametrization, and on cybersecurity 
analysis. 
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2. Hybrid energy storage system for grid support 

The services the Energy Storage Systems (ESSs) can provide in distribution grids are various. 
Among them, there are services related to the power quality improvement (e.g. reduction of phase 
unbalances and current harmonics, smoothing of fast fluctuations of power flows; compensation 
of reactive currents as well). For such services, little or none active power exchange with the grid 
is needed from a battery. The stress is in the power ratings of the associated power electronic 
modules to the batteries instead; for batteries, it is on providing short time response and high 
cyclability. On the other hand, other services such as the balancing or time shifting of renewable 
generation according to technical grid constraints (e.g. congestion), market premises (e.g. 
electricity price), and consumer habits (e.g. consumption profiles) require to actively and smartly 
exchange the energy stored in batteries in an hourly basis. A review of such services can be 
found in [1]. 

The hybridization of ESSs, so the inclusion of different types of batteries, permits to take 
advantage of the main performances of each one depending on the service to provide. However, 
to do so, the heterogeneous grouping of batteries must be managed optimally. The solving of 
such management optimization is the main object of the present work. Such exercise is solved 
through a mathematical optimization using diverse and representative time series data on the grid 
power flows. This describes the scope of the work, which is complemented graphically in Figure 
2. As can be noted, the grid operator, through its corresponding management algorithm, which is 
called Grid Operation Scheduler, provides input data for the PSA. The PSA, in addition, considers 
the status of batteries embedded into the PED, noted in the Figure as a hybrid energy storage 
solution, and provides the setpoints for charging / discharging each of the battery packs. 

 

Figure 2. The concept of power sharing algorithm (PSA) for the hybrid storage solution (the PED). 
 

The topology and ratings of the hybrid energy storage system, named as Power Electronics 
Device, PED, in RESOLVD project, were determined in previous deliverables (deliverable D2.1 
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and D2.2). As a summary, the required size for PED, this is determined around 75 kVA in power 
and 44 kWh in energy. 

In order to provide 75 kVA peak power, three power inverters will be connected in parallel, 25 
kVA each. Two of these inverters would be employed so as to exchange active power with the 
main grid (i.e. charging or discharging batteries when needed). The third converter would be 
employed to solve the above mentioned power quality issues. Such strategy provides the PED 
with enhanced operational flexibility. Internally, two different battery types will be integrated: a 
lead-acid pack and a lithium-ion one. The main performances of such hybrid solution will be 
exploited synergistically. Each pack will be integrated into the PED through a dedicated dc-dc 
power converter. The ratings (in energy) of each battery pack are around: 14 kWh for the lead-
acid pack, and 30 kWh for the lithium-ion one. The rated power for each of the packs is the same 
and limited to 20 kW by the associated dc-dc power converter. 

This permits to feed the whole neighbourhood under consideration in SS 030 and SS 528 
simultaneously during 4 hours approximately while isolated from the main grid and in summer 
months (this time period of energy supply is diminished in winter).  

The rest of the section, further deepening in the description of the problem of developing a hybrid 
ESS for grid support, presents the modeling of a distribution grid, stressing in the main defining 
characteristics; and of the hybrid ESS itself, depicting the modeling of both the batteries and the 
associated power electronics. The development of the mathematical optimization problem (i.e. 
the power sharing algorithm, PSA) is presented in a dedicated section afterwards, since 
comprising the main object of the work. 

2.1. Grid model 

The study case is based on the pilot grid. The grid is composed by two radial lines supplied by 
two corresponding Secondary Substations (SS), namely CT-030 and CT-528. Each line has 12 
CUPS installed each one with a power between 4.4kW – 8.8kW, few CUPS which are connected 
to the same bus have been aggregated in order to simplify the grid model. 

After the aggregation, the model consists on a total of 43 buses; 17 at line CT-030 where we have 
7 consumption nodes at different buses and 2 generation ones, and 26 buses at line CT-528 with 
also 2 producers but 9 consumption points. The 4 distributed generators are photo-voltaic 
technologies of 4.9kW – 7.5kW. 

Naturally, we have a total of 41 branches between the buses and one additional switch connecting 
both radial lines. We also have as well the batteries embedded into the PED located at the same 
CT-030 bus. 
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SS 528

SS 030

 

Figure 3. Aerial picture of the pilot network. The two SSs are circled in red. 
 

 

 

Figure 4. Grid representation using the real coordinates distribution. 
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Figure 5. Grid scheme. 

 

In order to study the grid, we have used the measured historic data between February and 
December 2017 of both consumers and producers. To emulate the forecast uncertainty, we have 
considered a 30% MAPE for the loads forecast and 10% for the generation, nevertheless these 
is only used for the robust approach applied in the reconfiguration of the grid with the switch. 

Based on the above assumptions, the time-dependent power profile set-points for the PED are 
determined by an optimization algorithm so-called “Grid Operation Scheduler”. 

The algorithm applied to optimize the set points of the battery is a Particle Swarm Optimization 
(PSO) used to evaluate the search space in order to minimize a given fitness function/ objective. 
The fitness function proposed is composed by two terms, the main one wants to flatten the energy 
curve in the CT-030 by performing peak-shaving, the second term wants to keep as low as 
possible the use of the battery in order to longer the last battery life. The importance of each term 
is determined by a decision-making parameter.  

min 𝜈 𝐹 1 𝜈 𝐹  (1) 

𝐹 𝜃 𝐸  (2) 

𝐹 𝜃 𝑠𝑜𝑐 𝑠𝑜𝑐  (3) 

The branch switch has been considered to be open all the time for the purposes of the present 
deliverable, therefore only the CT-030 part (where the battery is placed) is considered in this 
situation.  

2.2. Power electronics and battery modeling and control 

The topology of the power conversion system at which the batteries are connected to, is 
presented in Figure 6. As can be observed, each battery pack is connected to a dedicated H-
bridge dc-dc converter which in turn, is connected to a single dc-link. Then, a three-phase H-
bridge inverter interfaces with the external ac grid. This topology is flexible in the sense that 
different battery packs with diverse voltage and current ratings can be integrated. In the same 
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manner, it presents a good reliability since the system can still be operative in case one of the 
packs fails. 

 

Figure 6. The hybrid energy storage solution (the PED) managed by the power sharing algorithm (PSA). 
 

2.2.1. Battery modeling 

There are different options in literature to model batteries. A review of model types can be found 
in [1]. Models can be classified into electrochemical, analytical, stochastic and electrical circuit 
based ones. Each type can represent to a greater or lesser extent specific phenomena in 
batteries. For instance, the impact in battery performance of state of charge (SOC) levels, energy 
capacity variations, temperature and aging. The model types usually included in commercial 
battery management systems (BMSs) are those based on equivalent electrical circuits. These 
models permit to reproduce voltage and current characteristics for batteries, and also their 
dynamic responses while charging and discharging. To do so, such models are based on 
controllable voltage and current sources, in combination with passive components like 
resistances, capacitors and inductors. See in Figure 7 a summary of battery models. 

For the purposes of BMSs, one straightforward (and useful) approach to model batteries is 
adopting the so-called “simple model”. This is an equivalent circuit-based model based on a 
voltage source in series to a resistance. A description of this model can be found in [2]. 

Following contents presents the basis for the “simple model”, as well as for other eligible 
approaches for the purposes of the present project. 
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Figure 7. Summary of battery models. 
 

2.2.1.1. Simple battery model 

The equivalent circuit of the simple model is presented in Figure 8. The internal resistance of the 
battery is represented in the circuit by two resistances 𝑅  and 𝑅  so as to depict the slight variation 
of it while charging and discharging. Accordingly, to drive the current through either one or the 
another resistance, each is integrated in the circuit by a diode. 

 

Figure 8. Adopted equivalent circuit for modelling a battery. 
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The magnitude of resistances 𝑅  and 𝑅  can be obtained by testing the battery or directly from 
the information provided by the manufacturer. The same applies to the voltage source 𝑂𝐶𝑉 𝑠𝑜𝑐 . 

This voltage source depicts the open circuit voltage of the battery while in rest conditions. The 
magnitude for this voltage depends on the SOC: the higher the SOC for a battery, the higher the 
open circuit voltage. 

At the end, the sum of the voltage 𝑂𝐶𝑉 𝑠𝑜𝑐  and the voltage drop at the internal resistance yields 
the voltage at the terminals of the battery 𝑦 , so 

𝑦 𝑂𝐶𝑉 𝑠𝑜𝑐 𝑅 𝑖  (4) 
and 𝑅 should be considered as 𝑅  while discharging; 𝑅  while charging. Positive current is 
intended for discharging. To compute this equation, it is necessary to previously calculate 
𝑂𝐶𝑉 𝑠𝑜𝑐 . This correspondence between the open circuit voltage of the battery and the SOC is 
usually reflected into a lookup table that can be programmed easily in BMS devices. In turn, the 
SOC for a battery can be computed using the Coulomb counting method, which can be formulated 
as, 

𝑠𝑜𝑐 𝑠𝑜𝑐
𝜂 Δ𝑡

𝐶
𝑖  (5) 

where 𝜂  is the columbic efficiency (usually set as 1 for lithium-ion), Δ𝑡 the time step for 
computation, 𝐶  the rated capacity of the battery in Ah and 𝑖  the exchanged current, in A, at time 
step 𝑡. At the end, 𝑠𝑜𝑐  results expressed in per unit values. 

Through recurrent computation of equations (1) and (2), the BMS calculates the battery voltage 
and SOC. However, prior implementation of equations in the BMS, the parameters should be 
calculated. A rough estimation of 𝐶  and 𝑅  and 𝑅  can be obtained from datasheets. To improve 
the accuracy (and then the performance of the BMS while estimating battery state) an 
identification procedure should be carried out though. This procedure is based on a test of the 
battery before its utilization on field. Such identification procedure is depicted in Annex 2. 

2.2.1.2. Zero-hysteresis battery model 

As depicted in equation (1), the battery voltage just depends on the open circuit voltage 𝑂𝐶𝑉 𝑠𝑜𝑐  
and the voltage drop because of the internal resistance. However, such voltage drop does not 
only depend on the current flowing through the battery, but on its “stress”. After a charge or 
discharge process, the battery needs some time to relax and recover a voltage 𝑦  very similar, 
but not equal, to the open circuit voltage 𝑂𝐶𝑉 𝑠𝑜𝑐 . It happens, in fact, that following a discharge, 
the battery voltage relaxes to a value slightly lower than 𝑂𝐶𝑉 𝑠𝑜𝑐 . On the other way round, 
following a charge, the battery relaxes to a value slightly higher than 𝑂𝐶𝑉 𝑠𝑜𝑐 . 

These phenomena can be actually represented by a hysteresis. Such hysteresis is not actually 
represented in the previous model. 

As a result, the equation yielding the battery voltage for the zero-hysteresis model is 

𝑦 𝑂𝐶𝑉 𝑠𝑜𝑐 𝑅 𝑖 𝑠 𝑀 𝑠𝑜𝑐  (6) 
where 𝑠  is a function representing the sign of the current and depends on parameter 𝜀, small and 
positive. Then, 

𝑠
1,                 𝑖 𝜀
1,            𝑖 𝜀  

𝑠 ,            |𝑖 | 𝜀    
 (7) 

Function 𝑀 𝑠𝑜𝑐  is half the difference between such 𝑂𝐶𝑉 𝑠𝑜𝑐  while computing it from charge 
and discharge curves. In practice, we consider 𝑀 as a constant parameter, not a function of the 
State of Charge. 
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Then, for state of charge calculation, variable 𝑠𝑜𝑐 , the same equation (2) utilized for the simple 
battery model can be adopted. 

2.2.1.3. Combined battery model 

The simple model and the zero-hysteresis one relay in previous (offline) tests, in which the 
𝑂𝐶𝑉 𝑠𝑜𝑐  is determined. As a difference, such magnitude is not needed in the so-called 
combined battery model.  

This model is a combination of the well-known Shepherd’s model [3], the Unnewehr universal 
model and the Nernst model [2], [4]. The Shepherd’s model is one of the most utilized approaches 
for representing the averaged dynamic electrical behavior of batteries. As for the simple model, 
the battery resembles to a voltage source connected to a series resistance. The magnitude of the 
voltage source varies with the state of charge, as for the simple and zero-hysteresis model. 
However, as a difference with the simple model, the dependency between the voltage at this 
voltage source and the state of charge is not programmed as a lookup table or similar, but 
corresponds to 

𝑂𝐶𝑉 𝑠𝑜𝑐 𝐸
𝐾

𝑠𝑜𝑐
 (8) 

As a result, the battery terminal voltage is given by 

𝑦 𝐸
𝐾

𝑠𝑜𝑐
𝑅 𝑖  (9) 

The approach proposed by Unnewehr’s universal model is quite similar for the one in Shepherd’s 
model, as noted below 

𝑦 𝐸 𝐾 𝑠𝑜𝑐 𝑅 𝑖  (10) 
 

The way the open circuit voltage for the battery is calculated is further complicated in Nernst’s 
model, as can be noted in the following expression 

𝑦 𝐸 𝐾 ln 𝑠𝑜𝑐 𝐾 ln 1 𝑠𝑜𝑐 𝑅 𝑖  (11) 
 

At the end, the expression for calculating the battery voltage according to the Combined model 
becomes 

𝑦 𝐾
𝐾

𝑠𝑜𝑐
𝐾 𝑠𝑜𝑐 𝐾 ln 𝑠𝑜𝑐 𝐾 ln 1 𝑠𝑜𝑐 𝑅 𝑖  (12) 

For state of charge calculation, variable 𝑠𝑜𝑐 , the same equation (2) utilized for the simple battery 
model can be adopted. 

2.2.1.4. Selection of the battery model for the purposes of the project 

All three models presented so far, can effectively represent state-of-charge and terminal voltage 
variations for the batteries to be included in the PED. Simple model can be included in a simulation 
environment in a straightforward manner, and this also applies to the Zero-hysteresis model and 
the Combined one. So, in terms of computational effort, all three alternatives are perfectly eligible. 

The main difference is in terms of parameter identification. The Simple model just accounts on 2 
parameters, while there are 3 parameters to identify adopting the Zero-hysteresis option, and 7 
for the Combined model. 

The parameters identification procedure relays on the application of the least-squares estimation 
theory [5]. The idea is to compare the response variable of a real system (let’s say, the terminal 
voltage of a battery), with the estimated response by a model 𝑌. The quadratic error between 
these two magnitudes is to be minimized applying this theory. The optimal solution, i.e. the one 
with minimum error, is the one provided by a particular set of 𝑋 parameters of the model. This set 
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contains the value for the parameters of the model being adjusted. A detailed description of the 
least-squares estimation is offered in the Annex 2. 

For the application of the least-squares estimation technique, the batteries should be tested and 
the terminal voltage and the current profiles should be saved. Then, these are utilized in the 
parameters estimation procedure. In such test, periods in which the battery is relaxed and others 
when the battery is driving current should be considered. Thus, results would provide information 
for characterizing the open circuit voltage for different state of charge, and also for characterizing 
the internal resistance, and hysteresis-related phenomena as well. What is usually applied to this 
end, is a train of charge and discharge current pulses for the battery, distributed in time between 
periods for the battery to relax. 

The test data are obtained from a public database [6] and corresponds to a lithium-ion cell (INR 
18650-20R model). This is a cylindrical, 18650 standard type, similar to the ones actually building 
the lithium-ion battery pack to be integrated into the PED. Since considering such exemplary test 
as the common basis for adjusting the parameters of battery models, their performance can be 
fairly assessed. The input data are plotted in Figure 9. Orange and blue lines clearly plot the 
charge and discharge train of current pulses. As a consequence of such charge and discharge 
processes, the voltage of the cell (and thus the state of charge) varies in time (see purple and 
yellow lines). The relaxation of the cell can be clearly appreciated between current pulses. The 
voltage measured while the battery is relaxed, serves to compute the open circuit voltage 
characteristic as function of state of charge: variable 𝑂𝐶𝑉 𝑠𝑜𝑐  in the battery models. 

 

Figure 9. Input data for estimation of model parameters (least-squares estimation method) and comparing their 
performance. 

 

Table 1 depicts a summary of the parameters found through the application of the least-squares 
estimation method for each battery model. 

Model Parameter Value 
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Simple Charge resistance, 𝑅  0.2430 Ohm 
Discharge resistance, 𝑅  0.2648 Ohm 

Zero-hysteresis Charge resistance, 𝑅  0.2411 Ohm 
Discharge resistance, 𝑅  0.2629 Ohm 
Hysteresis parameter, 𝐻 0.0019 V 

Combined Charge resistance, 𝑅  0.2531 Ohm 
Discharge resistance, 𝑅  0.2561 Ohm 
𝐾  3.2290 V 
𝐾  0.0030 V 
𝐾  -0.8030 V 
𝐾  -0.0908 V 
𝐾  -0.0249 V 

Table 1. Adjusted parameters for the 3 models applying the least-squares estimation method and adopting the 
exemplary test data in Figure 9. 

 

Now, applying the parameters in Table 1, simulation results for all three battery models are 
compared in Figure 10. As can be observed, the performance of all three models is quite similar 
while calculating the cell voltage (blue line). To better evaluate the difference among all three 
models, Figure 11 zooms the “Area A” in Figure 10. 

 

Figure 10. Simulation results for all three battery models (Simple, Zero-hysteresis and Combined), and test data (blue 
line). 
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Figure 11. Simulation results for all three battery models (Simple, Zero-hysteresis and Combined), and test data (blue 
line). Detail of Area A in Figure 10. 

 

The root mean square error between the simulated profile for each battery model and the test 
data in Figure 9 are presented in Table 2. 

 

Model Root Mean Square Error 
Simple 0.0146 p.u. 
Zero-hysteresis 0.0144 p.u. 
Combined 0.0291 p.u. 

Table 2. Adjusted parameters for the 3 models applying the least-squares estimation method and adopting the 
exemplary test data in Figure 9. 

 

As can be noted, the best adjustment is achieved through the Zero-hysteresis model, while the 
poorest is reported for the Combined one. 

The Simple model, despite relaying on just 2 parameters (𝑅  and 𝑅 ), offers a performance almost 
as good as for the Zero-hysteresis model, which relays on 3 parameters (𝑅 , 𝑅  and 𝑀). For this 
reason, the battery model selected for the purposes of this project is the Simple model. 

2.2.2. Front-end grid inverter modeling and control 

The three-phase inverter is modelled as an ideal voltage source. For its modelling and control 
purposes, it is preferable not to consider time varying magnitudes, so ac voltages and currents 
are not treated as seen from a stationary frame, but from a rotating reference with grid frequency. 
This way, such magnitudes are seen as constant in time. To do so, the qd0 Park's transformation 
is utilized [7]. In short, Park’s transformation permit to represent the three sinusoidal waveforms 
for the current and voltage of a three phase system, as mainly two vectors in the Gaussian plane 
at 90º. These two vectors are stationary, and from their magnitude and phase, all information to 
the corresponding sinusoidal waveforms can be derived. Thus, the application of this 
transformation reduces the computational effort for the model, since not dealing with sinusoidal 
waveforms anymore. The result of such exercise can be consulted in [1]. 

Adopting such mathematics, the tuning of the control system of the front-end grid inverter can be 
easily solved. The aim of such controller, as can be noted in Figure 6, is to manage the reactive 
power 𝑄 exchanged with the main grid and to maintain constant the dc-link voltage 𝐸 for the 
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proper operation of the dc-dc modules. This controller is solved through a set of two PI control 
loops in cascade. The inner control loop manages the instantaneous currents exchanged with the 
grid expressed in the Park's frame, so in the qd0 reference. In turn, the active current set-point is 
provided by an outer control loop keeping the voltage 𝐸 as constant. 

For the sake of completeness, the expressions for the calculation of the parameters of the above 
explained PI control loops are introduced in the following. For the current control loops, it reads, 

𝐾
𝑅
𝜆

 (13) 

𝐾
𝐿
𝜆
 (14) 

where 𝐾  is the integral term and 𝐾  is the proportional one. The parameter 𝐿 is the grid 
inductance, and 𝑅 its phase resistance. The parameter 𝜆 is a time constant to be determined by 
the designer. 

Similarly, for the dc-link voltage control loop, it reads, 

𝐾
2 𝐶 𝜔

3 𝑘
 (15) 

𝐾
4 𝐶 𝜀 𝜔

3 𝑘
 (16) 

where 𝐶 is the dc-link capacitance, 𝜔 the oscillation frequency of the desired time response of the 
controller, and 𝜀 the associated damping coefficient. 

2.2.3. DC-DC converters modeling and control 

The dc-dc power modules actually manage the charging and discharging processes of batteries. 
So as to provide wide voltage operating range and protection against short-circuits, H-bridge 
modules are considered in this work. The operating principle of H-bridge modules while operated 
as dc-dc conversion blocks is explained extensively in literature, as for instance in [8]. In the 
present work, the average voltage synthetized at the battery side 𝑉 , as a result of the application 
of PWM techniques, is 

𝑉 𝐸 2 𝐷 1  (17) 
being 𝐸 the dc-link voltage, and 𝐷 the duty cycle for the transistors in the principal diagonal of the 
H-bridge matrix. So, the charging and discharging of batteries depend on the magnitude of the 
voltage 𝑉  and this, in turn depends on the applied duty cycle 𝐷. The duty cycle is solved by a 
current control loop, as noted in Figure 6. Such loop can be realized by a PI controller which 
tuning procedure can be consulted in state-of-the-art literature [1]. For the sake of completeness, 
the expressions for the calculation of the PI parameters are 

𝐾
𝜔 𝐿

𝐸
 (18) 

𝐾
2 𝜀 𝜔 𝐿

𝐸
 (19) 

where 𝐾  is the integral term and 𝐾  is the proportional one. The parameter 𝐿  is the 
inductance interfacing the battery and the dc-dc module. The parameter 𝜔  is the oscillation 
frequency of the desired time response of the controller, and 𝜀 the associated damping coefficient. 
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3. Optimization of the power sharing among the hybrid battery 
energy storage solution 

A hybrid ESS is proposed in the present work. Hybridization is because the ESS combines a 
heterogeneous grouping of battery types in a single unit. In particular, in this study the hybrid ESS 
is composed by two different battery types: one based on lithium-ion batteries and the other based 
on lead-acid ones. The motivation of combining those technologies is due to the fact that the 
associated investment can be diminished (as a difference with lithium-ion, lead-acid batteries are 
cheap, so part of storage requirements for the ESS can be fulfilled at low cost). However, the 
performance of lead-acid batteries is not as good as for lithium-ion in terms of cyclability and 
efficiency. Thus, optimal operational capability is needed to operate simultaneously and in a 
complementary way both battery technologies, so the performance of the hybrid ESS as a whole, 
is not diminished. Such optimal operation is enabled by a novel power sharing algorithm and this 
is the main contribution of the paper. This algorithm distributes the power demand received by 
the ESS from the network operation among the battery types embedded in, considering different 
aspects including the performance and degradation of each type. 

The optimization algorithm –the power sharing algorithm, PSA-- is a Non-Linear-Problem (NLP). 
Input data is introduced in subsection 3.1, decision variables in subsection 3.2, and constraints 
and function objective in subsection 3.3. 

3.1. Input data 

The input data for the mathematical problem are presented in Table 3. 

Item Description 
𝑇 Set for time period 𝑇 𝑡  . . 𝑡 . 
𝐼 Set for battery units 𝐼 𝑖  . . 𝑖 . 

𝑃  Rated power for battery 𝑖, in kW. 
𝐸  Rated energy for battery 𝑖, in kWh. 

𝑃  Power demand for the ESS at time 𝑡, in kW. 
𝑈  Boolean parameter indicating the sign of 𝑃 , (1 for positive; 0 otherwise). 
𝜀 Maximum discrepancy between initial and final state of charge for the set of 

batteries, in kWh 
𝛿 Maximum discrepancy between 𝑃  and actual output / input for the ESS, in p.u. 

𝑆𝑂𝐶  Maximum admissible state of charge for battery 𝑖, in p.u. 
𝑆𝑂𝐶  Minimum admissible state of charge for battery 𝑖, in p.u. 

𝜂  Charging efficiency for battery 𝑖, in p.u. 
𝜂  Discharging efficiency for battery 𝑖, in p.u. 
𝐶  Degradation cost in terms of the power magnitude exchanged by battery 𝑖, in p.u. 
𝐶  Degradation cost in terms of depth of discharge experienced by battery 𝑖, in p.u. 
𝛼 Weight for optimization objective of minimizing the discrepancy between power 

demand for the ESS and actual output, in p.u. 
𝛽 Weight for optimization objective of minimizing degradation because of excessive 

power, in p.u. 
𝛾 Weight for optimization objective of minimizing degradation because of excessive 

power ramp, in p.u. 

Table 3. Input data for the PSA. 
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3.2. Decision variables 

The decision variables for the mathematical problem is divided into sets and parameters, see 
Table 4. 

Item Description 
𝑝 ,  Power exchanged by battery 𝑖 at time 𝑡, in kW. 

𝑒
,
 Energy consumed by battery 𝑖 at time 𝑡, in kWh. 

𝑒
,
 Energy injected by battery 𝑖 at time 𝑡, in kWh. 

𝑠𝑜𝑐 ,  State of charge of battery 𝑖 at time 𝑡, in kWh. 

Table 4. Decision variables for the PSA. 
 

3.3. Problem constraints and objective function 

The state of charge for the battery 𝑖 at time 𝑡 is expressed in terms of the energy absorbed and 
injected (𝑒

,
 and 𝑒

,
 respectively), and the corresponding charging and discharging 

efficiencies, 𝜂  and 𝜂 . Thus, 

𝑠𝑜𝑐 , 𝑠𝑜𝑐 , 𝑒
,

𝜂 𝑒
,

/𝜂  (20) 

and 𝑠𝑜𝑐 ,  should be maintained within predetermined limits, so 

𝑠𝑜𝑐 , 𝑆𝑂𝐶 𝐸                   ∀  ∈ 𝐼 , 𝑡 ∈ 𝑇 (21) 

𝑠𝑜𝑐 , 𝑆𝑂𝐶 𝐸                   ∀  ∈ 𝐼 , 𝑡 ∈ 𝑇 (22) 

From the energy charged and discharged for the battery 𝑖 at time 𝑡, the associated average power 
𝑝 ,  developed in this time step can be derived as 

𝑝 , 𝑇 𝑒
,

𝑒
,

                 ∀  ∈ 𝐼 , 𝑡 ∈ 𝑇 (23) 

Power 𝑝 ,  should not exceed the ratings for each battery 𝑖. This is represented as 

𝑒 , 𝑒 , 𝑝 𝑇                  ∀  ∈ 𝐼 , 𝑡 ∈ 𝑇 (24) 

Then, constraint (22) ensures that the sign for the power developed by battery 𝑖 at time 𝑡 is 
coherent with that for the power set-point 𝑃 , 

𝑒 , 𝑒 , 𝑝 𝑇                  ∀  ∈ 𝐼 , 𝑡 ∈ 𝑇 (25) 

Constraint (23) avoids the simultaneous changing and discharging for a battery, 

𝑒 , 𝑒 , 0                 ∀  ∈ 𝐼 , 𝑡 ∈ 𝑇 (26) 

In addition, the power exchanged by the set of batteries at time 𝑡 should be similar to the setpoint 
𝑃 . A margin is provided though, because the ESS should have some flexibility to adjust their 
output so it can compensate power losses. Such flexibility is represented by an admissible error 
to 𝑃 , expressed by parameter 𝛿, 

𝛿 𝑈 𝑃 𝑈 𝑃 𝑝 ,                                           ∀  ∈ 𝑇 (27) 

𝛿 𝑈 𝑃 𝑈 𝑃 𝑝 ,                                        ∀  ∈ 𝑇 (28) 

𝛿 1 𝑈 𝑃 1 𝑈 𝑃 𝑝 ,                     ∀  ∈ 𝑇 (29) 

𝛿 1 𝑈 𝑃 1 𝑈 𝑃 𝑝 ,                  ∀  ∈ 𝑇 (30) 
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Constraint (28) ensures that the difference between the initial and final state of charge for the set 
of batteries (in kWh) is almost equal –assuming a small discrepancy represented by parameter 
𝜀, in kWh– to the energy balance derived from the power set-point profile for the whole time period 
of analysis, 

𝑠𝑜𝑐 , 𝑠𝑜𝑐 , 𝑃 𝑇 𝜀 (31) 

Finally, constraints (29) to (31) ensure the non-negativity of variables, 

𝑠𝑜𝑐 , 0                ∀  ∈ 𝐼 , 𝑡 ∈ 𝑇 (32) 
𝑒

,
0                ∀  ∈ 𝐼 , 𝑡 ∈ 𝑇 (33) 

𝑒
,

0                ∀  ∈ 𝐼 , 𝑡 ∈ 𝑇 (34) 

The optimization criteria are two-fold. Firstly, the discrepancy between the power demand for the 
ESS and the actual power exchanged should be minimized, regardless the power losses. Such 
discrepancy is quantified by term 𝑧 , which is formulated as, 

𝑧
𝑃 _ ∑ 𝑝 ,

∑ 𝑃
 (35) 

As can be noted, the square of the difference between 𝑃  and ∑ 𝑝 ,  is computed in equation 
(32). This is a strategy to fit the response of the ESS to the power set-point at all times. The 
second optimization criterion is to operate each of the batteries so the associated degradation 
can be minimized. This is related to two circumstances: i) the power exchanged; and ii) the depth 
of discharge. The higher the magnitude of such quantifiers, the higher the degradation for 
batteries. In general terms, thus, it is advisable to operate batteries as de-rated as possible and 
performs smoothed power profiles also. The advantage of hybridizing the ESS is to use the 
lithium-ion battery when answering to high and prolonged power demand; and the lead-acid 
battery for less stringent power profiles. This way, the degradation for lead-acid battery can be 
minimized, and the ESS can still provide good dynamic response through the resiliency of lithium-
ion battery against degradation. 

To penalize the degradation of batteries in terms of power rating, term 𝑧  is included and  
formulated as, 

𝑧
𝑝 ,

𝑃
𝐶

,

 (36) 

To penalize the degradation of batteries in terms of depth of discharge, term 𝑧  is included in the 
objective function and formulated as, 

𝑧
𝑠𝑜𝑐 ,

𝐸
𝐶

,

 (37) 

At the end, the problem turns into a multi-objective criterion which objective function is, 

𝑧 𝛼
𝑧
𝑍∗ 𝛽

𝑧
𝑍∗ 𝛾

𝑧
𝑍∗  (38) 

where 𝛼, 𝛽 and 𝛾 are weighting factors for each of the optimization criteria, and the sum of all 
three factors is one. In addition, each of the optimization criterion 𝑧 , 𝑧  and 𝑧  are divided by 
the value it takes 𝑧 when considering each one as the unique criterion for optimization (𝑍∗, 𝑍∗  
and 𝑍∗  respectively). Thus, each of the optimization criterion can be summed and compared 
between them. 
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4. Application example for performance evaluation 

This section presents a study case for the performance evaluation of the PSA. Two different 
exercises are carried out. The first one aims to test the PSA while driven by an arbitrary, academic 
time-dependent power profile set-point. The adoption of such academic power set-point eases 
the performance evaluation of the PSA while letting the PED to develop a power as close as 
possible to the demand, while also minimizing batteries degradation. The second exercise aims 
to test the PSA while driven by a realistic time-dependent power profile set-point. This profile is 
solved by the power network operator, addressing the needs of the grid for the next 24 hours. 
This second exercise aims to also reproduce the interaction between the grid scheduling 
algorithm, carried out by the network operator; and the PSA. 

4.1. Input data 

This section presents the input data for the PSA, stressing in the characteristics of the PED, 
batteries and power profile set-point. 

4.1.1. Lithium-ion battery energy ratings and efficiency 

Figure 12 presents the lithium-ion battery pack. This battery, holds around 30 kWh, thus providing 
the majority of the 44 kWh of storage capacity for the PED. It is a modular solution by the 
manufacturer FENECON GmbH. It is composed by 9 modules connected in series. Supervising 
and protecting them, on the top a master BMS is included. 

 

Figure 12. Lithium-ion battery pack. 
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Figure 13. Nameplate for one of the 9 modules of the lithium-ion battery pack. 
 

Figure 13 depicts the nameplate for one of the 9 modules of the lithium-ion battery pack. As can 
be observed, each of the packs is rated at 38.4 V and 3.45 kWh in energy, thus providing a 
theoretical rated voltage of about 345.6 V and energy 30.05 kWh. The nominal driving currents 
are around 90 A. These numbers though, cannot be considered as fully reliable to characterize 
the parameters of the pack. To do so, these are obtained from laboratory tests. Such tests serve 
to obtain the actual voltages, energy and efficiency of the pack, and from this information, the 
parameters of a simulation model (i.e. the open circuit voltage profile and internal resistances) 
can be obtained. 

In particular, and as in an analogous procedure as that presented for characterizing the 
parameters of a battery model in section 2.2.1, laboratory tests were carried out to charge and 
discharge the battery pack through a train of current pulses. 

The battery is firstly fully discharged, and then a train of charging and discharging current pulses 
are applied from a minimum SOC equal to 0%, to the maximum practical SOC (100%). Figure 
14 plots such train of current pulses. 

 

Figure 14. Train of current pulses charging (negative values) and discharging (positive values) the battery pack. 
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This current is provided by a bidirectional voltage source converter (see Figure 15). The ratings 
of this converter are 50 kW in power and up to 800 V dc voltage. At the grid side, the converter 
can be connected to a three-phase 400 V ac network. The converter communicates with the 
battery pack through a MODBUS RS485 protocol. 

 

Figure 15. Bidirectional voltage source converter utilized for testing the lithium-ion battery pack. 
 

Because of the charging and discharging process, the voltage of the battery varies from the 
minimum to the maximum voltage and vice-versa. The measured profile, along with the predicted 
profile by the battery simple model, zero-hysteresis model and the combined one, are plotted in 
Figure 16. The over and under voltage of the battery while driving current can be clearly observed 
in the voltage profile; also how the voltage varies in the resting periods between pulses. As 
previously introduced in section 2.2.1, the measurement of the voltage when the battery is relaxed 
serves to characterize the open circuit voltage of the battery function of the SOC. The over and 
under voltage of the pack while driving current serves to characterize the charging and 
discharging resistance. 

In Figure 16, it can be observed the performance of the different battery models fits with the 
measured voltage profile (blue line). 
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Figure 16. Measured battery voltage (blue line), and the predicted profiles by the simple (orange line), zero-hysteresis 
(yellow line) and combined (purple line) models. 

 

Based on the laboratory tests, the main parameters for the battery to carry out subsequent 
optimizations and simulations throughout this document to test the PSA, are presented in Table 
5. 

Item Description 
Manufacturer FENECON 
Model C PLUS 25 
Nominal capacity and voltage 87 Ah (C/3); 348 V nominal voltage for the whole pack, 

3.2 V per cell. 
Maximum discharge current 90 A (1C) 
Charge resistance, 𝑅  (simple 
model) 

0.2121 Ohm 

Discharge resistance, 𝑅  (simple 
model) 

0.2012 Ohm 

Discharge temperature -15 ºC to 50 ºC (25 ºC recommended)  
Charge temperature 0 ºC to 40 ºC (25 ºC recommended) 
Charging current for cycle use Voltage limits for the whole pack are set between 302 V 

and 387 V (corresponding to 2.8 V and 3.65 V per cell) 
Efficiency (round trip) 94.7% 

Table 5.Characteristic parameters for the lithium-ion battery pack based on the information provided by the 
manufacturer and laboratory tests. 

 

The round trip efficiency 𝜂 has been calculated by 

𝜂 𝐸 /𝐸  (39) 
 

where 𝐸  is the energy provided by the battery while discharging from 100% SOC to 0% 
SOC. This corresponds to a discharge capacity of 87 Ah. Analogously, 𝐸  is the energy 
consumed by the battery while charging 87 Ah, so increasing the SOC from 0% to 100%. Based 
on the tests performed to the battery, 𝐸 30.32 kWh and 𝐸 32.03 kWh, so 𝜂
94.7%. 
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4.1.2. Lead-acid battery energy ratings and efficiency 

The data characterizing the lead-acid battery pack is directly obtained from the manufacturer. The 
battery datasheet already includes the results from cycling tests that permit to characterize the 
capacity and degradation. 

 

Figure 17. Ultracell UCG75-12 valve regulated lead-acid battery. 
 

The nameplate characteristics of the battery are firstly presented in Table 6. 

Item Description 
Manufacturer Ultracell 
Model UCG75-12 
Nominal capacity and voltage 75 Ah (C/10) @ 12 V per battery; 240 V for the whole 

pack. 
Maximum discharge current 900 A 
Internal resistance 6.6 mOhm per battery; 0.1320 Ohm for the whole pack 

(and the resistance of the connectors and wires should 
be also added)1. 

Discharge temperature -15 ºC to 50 ºC (25 ºC recommended)  
Charge temperature 0 ºC to 40 ºC (25 ºC recommended) 
Charging current for cycle use Initial charging current less than 22.5 A. Per battery, final 

voltage between 14.4 V and 15.0 V at 25 ºC (between 
288 V and 300 V for the whole pack). This value is 
corrected with temperature coefficient -30 mV/ºC 

Efficiency (round trip) 91.6%2 

Table 6.Characteristic parameters for lead-acid battery pack based on the information provided in [13]. 
 

The energy storage capacity of the battery depends on the discharge current rates. That is, the 
higher the discharge current, the lower the energy that can be obtained from a battery. Such 
dependency is tested by the manufacturer. Results are reproduced in Figure 18 and Figure 19. 

                                                      
1 The resistance of the connectors and wires has been adjusted to fit with envisaged voltage drop of the 
battery pack while driving currents when tested. 
2 This efficiency has been derived from the information in the datasheet It was not directly included in 
there. 



 
 
 
 
 
 

33 
 

This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grand agreement No 773715 

 

Figure 18. Effect of discharge rates in energy storage capacity of the lead-acid battery (I/II). 
 

Figure 18 presents, in the vertical axis, the power developed by the battery while being 
discharged, so the discharge velocity. As can be noted, the higher the power developed, the lower 
the time to get the minimum operating voltage for the cell (so the minimum state of charge). 

 

 

 

Figure 19. Effect of discharge rates in energy storage capacity of the lead-acid battery (II/II). 
 

Figure 19 clearly shows the dependency of the battery cell with the discharge velocity. As can be 
noted, the faster the discharge process, the lower the energy (in Wh, vertical axis) that can be 
extracted from the cell. Various trends are shown, each for a particular minimum operating voltage 
for the cell. 

It is interesting to note that the capacity indicated by the manufacturer in the nameplate of the 
battery corresponds to a discharge process that takes 10 h (C/10 rate, see Table 6). Such slow 
discharge profile is the one that almost maximizes the storage capacity in Figure 18, so the 
information provided by the manufacturer about the capacity of the battery is very optimistic. 

Depending on the service the battery provides, it may be subjected to higher or lower current 
ratings than C/10, and thus the capacity to be considered so as to estimate state of charge and 
similar calculations, would not be the one provided by the manufacturer in the nameplate. The 
designer should select the nominal capacity of the battery that fits best according to the expected 
current to be exchanged through it. Table 7 depicts the capacity (in Ah) to consider for different 
current rates. 
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Discharge rate Capacity and final cell voltage 
4.02 A (C/20) 80.4 Ah ; 1.80 V/cell (10.8 V/battery) 
7.50 A (C/10) 75.0 Ah ; 1.80 V/cell (10.8 V/battery) 
13.2 A (C/5) 65.8 Ah ; 1.75 V/cell (10.5 V/battery) 
48.5 A (1C) 48.5 Ah ; 1.60 V/cell (9.6 V/battery) 

Table 7.Capacity of the lead-acid battery depending on the discharge current rate. 
 

4.1.3. Calculation of parameters weighting degradation of lead-acid and lithium-ion 
batteries 

There are various factors affecting battery degradation, either for lithium-ion and lead-acid types. 
Among most important factors, temperature, depth of discharge and current rates are principal 
ones (Hoke et al. 2011). The literature on battery degradation mechanisms is extensive and in 
most of the cases refer to particular battery types under heterogeneous test conditions. So it is 
difficult to derive conclusions that can be generalized to any battery type. Anyhow, and in general 
terms, from literature it can be concluded that: 

- The higher the depth of discharge, the lower the lifespan of batteries. This has 
sense, since high depth of discharge means to utilize most of the active material in battery 
electrodes for electrochemical reactions and thus, batteries become degraded. 

- The higher the current rate, the lower the lifespan of batteries. This also has sense, 
since the higher the current, the higher also the density of electrochemical reactions 
happening in the electrodes and thus degrading them. 

 

In the present work, battery degradation is going to be associated to the above mentioned factors: 
depth of discharge and current rates. Temperature is also an important affecting factor [9] for 
degradation. However, since batteries are to be integrated in a stationary and conditioned 
environment, this is not to taken into account in this work. 

4.1.3.1. Effect of depth of discharge in battery lifespan 

Lead-acid batteries 

The higher the Depth of Discharge, DoD, the shorter the lifespan. From this information, one 
should derive the degradation parameters 𝐶  per each of the two battery types in the PED for 
running the power sharing algorithm (see Table 3, section 3.1). 

 

Figure 20. Dependency between cyclability and DoD for valve-regulated lead acid batteries. Source: [10] 
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The effect of DoD on lifespan for lead-acid batteries is properly reported by manufacturers in their 
datasheets. Cyclability can easily vary in a factor of ten as depicted in Figure 20. 

A review of the datasheets for the particular battery to be integrated into the PED (battery model 
UCG75-12 from Ultracell [13]), along with similar ones found in the market yields Figure 21. This 
figure, plots that the larger the depth of discharge, the shorter the life of the battery. Further, such 
dependency is not linear, but it presents a logarithmic shape. 

The data for the particular lead-acid battery type to be integrated in the PED is incorporated in 
the plot by the blue dotted line. This is directly provided by the battery manufacturer in the 
corresponding datasheet. As can be observed, the trend for this Ultracell UCG75-12 battery is 
quite similar to the one reported by other manufacturers. 

According to Figure 21, it can be concluded that the cyclability of a lead-acid cell typically ranges 
between 4000 cycles at 20 % DoD and 450 cycles at 100% DoD on average. Life can be multiplied 
almost by 9 depending on the DoD. 

 

 
 

Figure 21. Dependency between cyclability and depth of discharge. Tests according to IEC 896-2 (25 ºC). Data for GEL 
battery: [11]; data for Sinetech battery: [12]; data for Ultracell battery: [13] 

 

 

Lithium-ion batteries (lithium-iron-phosphate, LFP type) 

For LFP cells, such dependency between DoD and cyclability is not as well reported as for lead-
acid batteries. Literature is extensive but it is not straightforward to conclude with clear, tangible 
and generalizable results. 
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Anyhow, some works propose similar relationship to that shown in Figure 21 for lead-acid 
batteries. This is the case of [14], which output is reproduced in Figure 22. As can be observed, 
the relationship between DoD and cyclability is not linear at all. Cyclability can be greatly improved 
for very small DoD. For the particular LFP cell considered in Figure 22, it can be concluded that 
cyclability varies between 15000 cycles at 20% DoD and 2000 cycles at 100% DoD. Hence, 
lifespan can be multiplied by a factor of 7.5 depending on the DoD. 

Comparing Figure 21 with Figure 22, we can conclude that the affectation of DoD to LFP lifespan 
can be lower than for lead-acid batteries. This is totally aligned with the recommendations of 
manufacturers in regard of the integration of batteries in the particular ends they are aimed to: the 
minimum recommended SOC for lead-acid batteries is conventionally higher than for lithium-ion 
batteries. 

 

Figure 22. Dependency between cyclability and depth of discharge for a lithium-ion battery. Source: [14]. 
 

4.1.3.2. Effect of current rates in battery lifespan 

Lead-acid batteries 

The dependency between cyclability and current rates for lead-acid batteries can be assessed 
from various works in literature. For instance, [15] performed tests on 25 Ah @ 2 V sealed lead-
acid batteries to evaluate the influence of various aspects on battery degradation. The authors 
proposed, as an outcome, mathematical expressions for the degradation correlating the above 
mentioned aspects. An interesting expression is the one stating that the capacity of the battery, 
𝐶 (in %), varies following the equation 𝐶 % 100 0.21 𝑛 0.31 𝑐, where 𝑛 is the number of 
cycles and 𝑐 is the charging rate, in A. 

Hence, the relationship between current rates and degradation is clear. However, it is hard to 
generalize results since these are different for each lead-acid subtype; even for the same time 
and different batch. In general terms though, degradation in terms of power charge and discharge 
rates is considered in the present work as several times higher for lead-acid with respect to 
lithium-ion. A proof is that manufacturers, in their datasheets, recommend discharge rates are 
usually around 0.1C or 0.2C (so at 10% or 20% of the nominal design current for the battery) so 
as to maximize useful life; while this rate can be 0.7C or even 1C for lithium-ion batteries, so 
around 8 times more on average [16], [17], [18]. 

Lithium-ion batteries (lithium-iron-phosphate, LFP type) 

Looking now at the of rate of discharge, for LFP the affectation of current rates can be derived 
from evaluating the trend in Figure 23. Accordingly, lifespan vary between 500 cycles at 10C and 
3500 cycles at 1C. So lifespan can be multiplied by a factor of 7 depending on current rates. 
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Figure 23. Dependency between cyclability and current rates for a lithium-ion battery. Source: [14]. 
 

The relationship between life and C-rate is also depicted by (Omar et al. 2014) for LFP cells. The 
experiments in this case were done at constant current and reaching 100 DoD%. It can be 
concluded that, for this particular cell, lifespan varies between 559 cycles at 15C, 1100 cycles at 
10C and 2900 cycles at 1C. So life is multiplied by a factor of almost 3 between 1C and 10C. 

 

Figure 24. Dependency between cyclability and current rates. Source: [19]. 
 

4.1.4. Power demand from the network for the PED 

Two power demand profiles for the PED are to be considered. The first one is step profiled, 
arbitrarily set by the authors of the present work. Although arbitrary, it serves to clearly evaluate 
the performance of the PSA while following the demand profile and distributing it among the two 
battery types for minimum degradation. The reason of considering such academic profile is to 
evaluate the dynamics of lithium-ion and lead-acid battery pack responses, while not subjected 
to the variability and randomness of a realistic demand profile for the PED. Such academic 
demand profile is depicted in Figure 25. 
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Figure 25. Arbitrary demand profile for the PED. The time step is 1 min. 
 

In a second step, the performance of the PSA is to be tested with a realistic demand profile solved 
by the corresponding management algorithm of the distributor operator (this algorithm is being 
developed in the work package 3 of RESOLVD project, for more information). 

This demand profile is updated in an hourly basis to diminish forecasting errors in the above 
mentioned management algorithm of the distributor operator. As a result, the PSA is to be also 
executed in an hourly basis in the PED. Such procedure is detailed in section 4.3. 

4.2. Optimization results adopting the arbitrary demand profile 

The aim of this section is to show the performance of the hybrid energy storage system when 
being operated under the PSA. The PSA is executed once per hour for determining both lithium-
ion and lead-acid batteries power contribution to meet the demand profile while minimizing a multi-
objective function. The multi-objective function to be minimized is: 

𝑧 𝛼
𝑧
𝑍∗ 𝛽

𝑧
𝑍∗ 𝛾

𝑧
𝑍∗   

The terms 𝑍∗, 𝑍  
∗ and 𝑍∗  are determined after running 3 optimization problems. The first is to 

minimize the discrepancy between the power output of the PED and the power scheduling profile 
(𝛼 1, 𝛽 𝛾 0 . The corresponding optimal solution is 𝑍∗. The second is to minimize the 
degradation cost for the batteries as function of excessive driving currents ( 𝛽 1, 𝛼 𝛾 0 . 
The corresponding optimal solution is 𝑍∗ . The third is to minimize the degradation cost for the 
batteries as function of excessive depth of discharge (𝛾 1, 𝛼 𝛽 0). The corresponding 
optimal solution is 𝑍∗ . In each of these three optimizations, the input demand power profile is 
given by 4100 hourly values. The results obtained are depicted in Figure 26, Figure 27 and 
Figure 28, respectively. These three optimization problems are identified as Optimization 1, 
Optimization 2 and Optimization 3 in Table 8. 

When running the PSA, equal importance (i.e. same weight) is given to satisfy the demand and 
to minimize degradation. Therefore, the weights of the objective function have been selected as 
follows: 𝛼 0.5, 𝛽 0.25, 𝛾 0.25. The corresponding results are depicted in Figure 29.  

The plots in each figure (Figure 26 - Figure 29) show, for each battery technology, the power 
delivered or absorbed at each hour (A), the input energy (B), the output energy (C) and the state 
of charge (SOC) (D). Battery 1 (blue line) corresponds to the lithium-ion and battery 2 (green line) 
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corresponds to the lead acid battery. Plot (E) shows the power reference of the PED versus the 
sum of all the power from the two batteries. 

In the plot marked with (A), positive values mean to absorb power from the grid. The lithium-ion 
battery, since being the one with best performance in terms of efficiency and degradation, is 
holding most of power demand, both in terms of power magnitude and power ramp. The lead-
acid battery, on the other hand, is delivering much lower power for reduced degradation. 

In plot marked with (D), the SOC variation to fit the power profile set-point is represented. Most 
of the energy storage capacity is utilized for the lithium-ion battery. In addition, the state of charge 
variation presents high ramping, in coherence with the significant power developed in time. 
Conversely, the lead-acid battery is operated smoothly and within a limited state of charge range. 

As shown in the plot marked with (E). while absorbing power, the power profile developed by the 
ESS mostly fits with the set-point. However, while injecting power to the grid, the output of the 
ESS is lower than requested. This difference though, is within admissible limits (35%, as set by 
parameter δ). Such difference is because the batteries need some flexibility to compensate 
losses: it is not possible to strictly follow the power set-point at all times. 

Optimization function 𝒛 value Computation time (s) 
Optimization 1 0.5171 132 
Optimization 2 1.2360 104 
Optimization 3 869.6683 85 
PSA 6.4349 40.7 

Table 8. Objective function results and computation time to find the solution. 
 

Table 8 shows the objective function values obtained and computation times required in each 
optimization problem run (Optimization 1, Optimization 2, Optimization 3 and PSA). It is worth 
mentioning that the optimization results have been obtained for 4100 demand hourly values, but 
in practical implementation, only 24 values (one day) will be used as rolling horizon. The computer 
used to perform the calculations is an Intel i7-8550U CPU @ 180 GHz, 16 GB RAM, with operative 
system of 64 bits. The solver used is IPOPT. 
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Figure 26. Results of the optimization for minimizing the discrepancy between the power output of the PED and the 
power scheduling profile. 
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Figure 27. Results of the optimization for minimizing the degradation cost for the batteries as function of excessive 
DoD. 
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Figure 28. Results of the optimization for minimizing the degradation cost for the batteries as function of excessive 
driving currents. 
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Figure 29. Results of the multi-objective optimization for the PSA. 
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4.3. Iterative procedure for performance evaluation 

The iterative procedure is done performing the grid “Grid Operation Scheduler” and posteriorly 
applying the PSA function of forecasts and the estimated state of charge. In order to verify that 
the estimation of the SOC is right a parallel simulation is carried out to determine the real SOC of 
batteries. 

Therefore, the process is the following and it is depicted in Figure 30: 

 The first step of this iterative process is the estimation of the future SOC. The partials 
and averaged SOCs are estimated taking into account the current power set-points and 
the current SOCs of charge. Note that the partials SOCs corresponds to lithium and lead-
acid batteries. 

 The second step initializes when the averaged SOC is forecasted. The Grid Operation 
Scheduler is executed according to the most recent consumption and generation 
forecasts. Posteriorly, the energy schedule for the next 24 hours is requested to the PED. 

 The third step is mainly the power sharing algorithm which takes this energy schedule 
and tries to optimize it to ensure the requested power and procure to take care of 
batteries. Finally, it defines how much energy comes from lithium and lead-acid batteries. 

 

Simultaneously, the battery behavior simulation is performed in order to calculate the real SOCs 
when the batteries perform the requested energy set-points. The results are the point of departure 
for the estimation of future SOCs. Figure 30 summarizes the first iterations of the above described 
procedure. 
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Figure 30. Graphical description of the iterative procedure to test the PSA in combination with the grid Grid Operation 
Scheduler. 

 

In particular, we have done 15 iterations to test the performance of the PSA. A step-by-step 
description of the calculations performed in each of the iterations are summarized in Table 9. 

Iter. Item Time Process Inputs Outputs Results in files 
1 0 23:20 SOC estimation by 

the beginning of 
next hour 

Real SOC at 23:00 h 
(-1 day) 

Estimated SOC at 
00:00 h 

estimacio.xlsx 
(iteration_1) 

1 23:30 Grid Operation 
Scheduler 

Real SOC at 00:00 h P_net*(00:00) 
… 
P_net*(23:00) 

ESS_schedule.xlsx 
(iteration_1) 
 

2 23:45 PSA execution 
based on grid 
scheduling 

Inputs item 1 + 
Results item 1 

P_psa*(00:00) 
… 
P_psa*(23:00) 

iteracio1.mat 

3 00:00 PED simulation to 
check real behavior 

iteracio1.mat  Real SOC1.mat 
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Iter. Item Time Process Inputs Outputs Results in files 
2 4 00:20 SOC estimation by 

the beginning of 
next hour 

Real SOC at 00:00 h 
& 
P_psa*(00:00) 

Real SOC(01:00) estimacio.xlsx 
(iteration_2) 

5 00:30 Grid Operation 
Scheduler 

Real SOC at 01:00 h P_net*(01:00) 
… 
P_net*(00:00 +1d) 

ESS_schedule.xlsx 
(iteration_2) 
 

6 00:45 PSA execution 
based on grid 
scheduling 

Inputs item 5 + 
Results item 5 

P_psa*(01:00) 
… 
P_psa*(00:00 +1d) 

iteracio2.mat 

7 01:00 PED simulation to 
check real behavior 

iteracio2.mat  Real SOC2.mat 

3 8 01:20 SOC estimation by 
the beginning of 
next hour 

Real SOC at 01:00 h 
& 
P_psa*(01:00) 

Real SOC(02:00) estimacio.xlsx 
(iteration_3) 

9 01:30 Grid Operation 
Scheduler 

Real SOC at 02:00 h P_net*(02:00) 
… 
P_net*(01:00 +1d) 

ESS_schedule.xlsx 
(iteration_3) 
 

10 01:45 PSA execution 
based on grid 
scheduling 

Inputs item 9 + 
Results item 9 

P_psa*(02:00) 
… 
P_psa*(01:00 +1d) 

iteracio3.mat 

11 02:00 PED simulation to 
check real behavior  

iteracio3.mat  Real SOC3.mat 

4 12 02:20 SOC estimation by 
the beginning of 
next hour 

Real SOC at 02:00 h 
&  
P_psa*(02:00) 

Real SOC(03:00) estimacio.xlsx 
(iteration_4) 

13 02:30 Grid Operation 
Scheduler 

Real SOC 03:00 h P_net*(03:00) 
… 
P_net*(02:00 +1d) 

ESS_schedule.xlsx 
(iteration_4) 
 

14 02:45 PSA execution 
based on grid 
scheduling 

Inputs item 13 + 
Results item 13 

P_psa*(03:00) 
… 
P_psa*(02:00 +1d) 

Iteracio4.mat 

15 03:00 PED simulation to 
check real behavior  

Iteracio4.mat  Real SOC4.mat 

5 16 03:20 SOC estimation by 
the beginning of 
next hour 

Real SOC at 03:00 h 
& 
P_psa*(03:00) 

Real SOC(04:00) estimacio.xlsx 
(iteration_5) 

17 03:30 Grid Operation 
Scheduler 

Real SOC at 04:00 h P_net*(04:00) 
… 
P_net*(03:00 +1d) 

ESS_schedule.xlsx 
(iteration_5) 
 

18 03:45 PSA execution 
based on grid 
scheduling 

Inputs item 17 + 
Results item 17 

P_psa*(04:00) 
… 
P_psa*(03:00 +1d) 

Iteracio5.mat 

19 04:00 PED simulation to 
check real behavior  

Iteracio5.mat  Real SOC5.mat 

6 20 04:20 SOC estimation by 
the beginning of 
next hour 

Real SOC at 04:00 h 
& 
P_psa*(04:00) 

Real SOC(05:00) estimacio.xlsx 
(iteration_6) 

21 04:30 Grid Operation 
Scheduler 

Real SOC at 05:00 h P_net*(05:00) 
… 
P_net*(04:00 +1d) 

ESS_schedule.xlsx 
(iteration_6) 
 

22 04:45 PSA execution 
based on grid 
scheduling 

Inputs item 21 + 
Results item 21 

P_psa*(05:00) 
… 
P_psa*(04:00 +1d) 

Iteracio6.mat 

23 05:00 PED simulation to 
check real behavior  

Iteracio6.mat  Real SOC6.mat 

7 24 05:20 SOC estimation by 
the beginning of 
next hour 

Real SOC at 05:00 h 
& 
P_psa*(05:00) 

Real SOC(06:00) estimacio.xlsx 
(iteration_7) 

25 05:30 Grid Operation 
Scheduler 

Real SOC 06:00 h P_net*(06:00) 
… 
P_net*(05:00 +1d) 

ESS_schedule.xlsx 
(iteration_7) 
 

26 05:45 PSA execution 
based on grid 
scheduling 

Inputs item 25 + 
Results item 25 

P_psa*(06:00) 
… 
P_psa*(05:00 +1d) 

Iteracio7.mat 

27 06:00 PED simulation to 
check real behavior  

Iteracio7.mat  Real SOC7.mat 

8 28 06:20 SOC estimation by 
the beginning of 
next hour 

Real SOC at 06:00 h 
& 
P_psa*(06:00) 

Real SOC(07:00) estimacio.xlsx 
(iteration_8) 
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Iter. Item Time Process Inputs Outputs Results in files 
29 06:30 Grid Operation 

Scheduler 
Real SOC at 07:00 h P_net*(07:00) 

… 
P_net*(06:00 +1d) 

ESS_schedule.xlsx 
(iteration_8) 
 

30 06:45 PSA execution 
based on grid 
scheduling 

Inputs item 29 + 
Results item 29 

P_psa*(07:00) 
… 
P_psa*(06:00 +1d) 

Iteracio8.mat 

31 07:00 PED simulation to 
check real behavior  

Iteracio8.mat  Real SOC8.mat 

9 32 07:20 SOC estimation by 
the beginning of 
next hour 

Real SOC at 07:00 h 
& 
P_psa*(07:00) 

Real SOC(08:00) estimacio.xlsx 
(iteration_9) 

33 07:30 Grid Operation 
Scheduler 

Real SOC at 08:00 h P_net*(08:00) 
… 
P_net*(07:00 +1d) 

ESS_schedule.xlsx 
(iteration_9) 
 

34 07:45 PSA execution 
based on grid 
scheduling 

Inputs item 33 + 
Results item 33 

P_psa*(08:00) 
… 
P_psa*(07:00 +1d) 

Iteracio9.mat 

35 08:00 PED simulation to 
check real behavior  

Iteracio9.mat  Real SOC9.mat 

10 36 08:20 SOC estimation by 
the beginning of 
next hour 

Real SOC at 08:00 h 
& 
P_psa*(08:00) 

Real SOC(09:00) estimacio.xlsx 
(iteration_10) 

37 08:30 Grid Operation 
Scheduler 

Real SOC at 09:00 h P_net*(09:00) 
… 
P_net*(08:00 +1d) 

ESS_schedule.xlsx 
(iteration_10) 
 

38 08:45 PSA execution 
based on grid 
scheduling 

Inputs item 37 + 
Results item 37 

P_psa*(09:00) 
… 
P_psa*(08:00 +1d) 

Iteracio10.mat 

39 09:00 PED simulation to 
check real behavior  

Iteracio10.mat  Real SOC10.mat 

11 40 09:20 SOC estimation by 
the beginning of 
next hour 

Real SOC at 09:00 h 
& 
P_psa*(09:00) 

Real SOC(10:00) estimacio.xlsx 
(iteration_11) 

41 09:30 Grid Operation 
Scheduler 

Real SOC at 10:00 h P_net*(10:00) 
… 
P_net*(09:00 +1d) 

ESS_schedule.xlsx 
(iteration_11) 
 

42 09:45 PSA execution 
based on grid 
scheduling 

Inputs item 41 + 
Results item 41 

P_psa*(10:00) 
… 
P_psa*(09:00 +1d) 

Iteracio11.mat 

43 10:00 PED simulation to 
check real behavior  

Iteracio11.mat  Real SOC11.mat 

12 44 10:20 SOC estimation by 
the beginning of 
next hour 

Real SOC at 10:00 h 
& 
P_psa*(10:00) 

Real SOC(11:00) estimacio.xlsx 
(iteration_12) 

45 10:30 Grid Operation 
Scheduler 

Real SOC at 11:00 h P_net*(11:00) 
… 
P_net*(10:00 +1d) 

ESS_schedule.xlsx 
(iteration_12) 
 

46 10:45 PSA execution 
based on grid 
scheduling 

Inputs item 45 + 
Results item 45 

P_psa*(11:00) 
… 
P_psa*(10:00 +1d) 

Iteracio12.mat 

47 11:00 PED simulation to 
check real behavior  

Iteracio12.mat  Real SOC12.mat 

13 48 11:20 SOC estimation by 
the beginning of 
next hour 

Real SOC 11:00 h & 
P_psa*(11:00) 

Real SOC(12:00) estimacio.xlsx 
(iteration_13) 

49 11:30 Grid Operation 
Scheduler 

Real SOC at 12:00 h P_net*(12:00) 
… 
P_net*(11:00 +1d) 

ESS_schedule.xlsx 
(iteration_13) 
 

50 11:45 PSA execution 
based on grid 
scheduling 

Inputs item 49 + 
Results item 49 

P_psa*(12:00) 
… 
P_psa*(11:00 +1d) 

Iteracio13.mat 

51 12:00 PED simulation to 
check real behavior  

Iteracio13.mat  Real SOC13.mat 

14 52 12:20 SOC estimation by 
the beginning of 
next hour 

Real SOC at 12:00 h 
& 
P_psa*(12:00) 

Real SOC(13:00) estimacio.xlsx 
(iteration_14) 

53 12:30 Grid Operation 
Scheduler 

Real SOC at 13:00 h P_net*(13:00) 
… 
P_net*(12:00 +1d) 

ESS_schedule.xlsx 
(iteration_14) 
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Iter. Item Time Process Inputs Outputs Results in files 
54 12:45 PSA execution 

based on grid 
scheduling 

Inputs item 53 + 
Results item 53 

P_psa*(13:00) 
… 
P_psa*(12:00 +1d) 

Iteracio14.mat 

55 13:00 PED simulation to 
check real behavior  

Iteracio14.mat  Real SOC14.mat 

15 56 13:20 SOC estimation by 
the beginning of 
next hour 

Real SOC 13:00 h & 
P_psa*(13:00) 

Real SOC(14:00) estimacio.xlsx 
(iteration_15) 

57 13:30 Grid Operation 
Scheduler 

Real SOC at 14:00 h P_net*(14:00) 
… 
P_net*(13:00 +1d) 

ESS_schedule.xlsx 
(iteration_15) 
 

58 13:45 PSA execution 
based on grid 
scheduling 

Inputs item 57 + 
Results item 57 

P_psa*(14:00) 
… 
P_psa*(13:00 +1d) 

Iteracio15.mat 

59 14:00 PED simulation to 
check real behavior  

Iteracio15.mat  Real SOC15.mat 

Table 9. Step-by-step description of the 15 iterations for the performance evaluation procedure of the PSA in 
combination with the optimization algorithm of the power network. 

 

Figure 31 shows the whole energy schedules determined in this process. 

 

Figure 31. Energy schedules determined by the Grid Operation Scheduler. Negative values are for discharging set-
points for the battery. Positive ones are for charging. 

 

As a result of the process, we can see here how the scheduling is updated. As Figure 31 depicts, 
the trend is to discharge the battery during the night and charging it during the day. As the 
evolution of day progresses, this tend also evolves, note that first iterations (blue) are more 
pronounced than final iterations (green). The red points indicate the starting hour per each 
scheduling. As the service requested by the PED is to apply the peak shaving, batteries are 
charged at central hours of the day and discharged during the night. 
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Then, according to the PSA, the PED responds with the exchanging energy between the network 
and the batteries, fulfilling the requested energy schedule (as Figure 32 depicts). 

 

Figure 32. Energy requested by the network operator per each hour (red line), and the corresponding output by the 
PED (blue line). 

 

As observed in Figure 32, the error between the requested energy and that actually exchanged 
by the PED is quite small at all times. At some hours though, the output of the PED presents 
some variations with respect to the requested energy, and this is because the PSA decides to do 
so, to compensate the losses in batteries not exactly envisaged by the Grid Operation Scheduler. 

Then, Figure 33 presents the discrepancy between the SOC estimated (considered) by the 
network operator for its Grid Operation Scheduler per each hour (red line), and actual (averaged) 
SOC of batteries embedded in the PED (blue line). An averaged SOC, 𝑠𝑜𝑐 , for the set of the 2 
battery packs embedded into the PED is calculated as 

𝑠𝑜𝑐
∑ 𝐸 𝑠𝑜𝑐 ,

∑ 𝐸
                 ∀  ∈ 𝐼 , 𝑡 ∈ 𝑇 (40) 

where 𝐸  is the rated energy of each of the battery packs embedded into the PED.  

Figure 34 and Figure 35 compares the estimated lithium-ion and lead-acid battery SOC’s by the 
PSA, with the real ones provided by the simulation model of the PED. As can be observed, little 
discrepancies are observed for the lithium-ion battery, while most remarkable ones are for the 
lead-acid battery. This is because the calculation of SOC for the lead-acid battery is more 
challenging than for the lithium-ion pack due to the higher internal resistance of this technology. 
The higher the internal resistance, the higher also the over and under voltages the battery 
experiences while driving current, and this affects the accuracy of SOC estimation. In addition, it 
can be observed that the minimum SOC for the lead-acid pack is limited at 0.3 p.u., while it is 0.1 
for the lithium-ion pack, as included as a premise for the PSA. 
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Figure 33. SOC estimated (considered) by the network operator for its Grid Operation Scheduler per each hour (red 
line), and actual (averaged) SOC of batteries embedded in the PED (blue line). 

 

Figure 34. Lithium-ion SOC estimated (considered) by the PSA (red line), and actual SOC provided by the simulation 
model of the PED. 
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Figure 35. Lead-acid SOC estimated (considered) by the PSA (red line), and actual SOC provided by the simulation 
model of the PED. 

Complementing the above graphical evaluations, Table 10 compares the real SOC (obtained 
from the simulation model of the PED) with the estimated ones by the PSA and the Grid Operation 
Scheduler. Per each estimation, the error to the real SOC is also included. It can be clearly 
appreciated that the error for most of the hours is lower for PSA than for the Grid Operation 
Scheduler. This is because the PSA details the behavior of each of the batteries embedded into 
the PED, while the Grid Operation Scheduler considers all batteries as if they were just one 
aggregated pack. In any case, though, the error for both algorithms (PSA and Grid Operation 
Scheduler) is below 10% for almost all cases, and this is considered accurate enough. 

Hour Real SOC (from 
simulation) 

Estimated SOC by PSA 
and error 

Estimated SOC by the 
Grid Operation Scheduler 
and error 

01:00 h 0.5550 0.5551 0.02 % 0.5516 -0.61 % 
02:00 h 0.4847 0.4812 -0.72 % 0.4873 0.54 % 
03:00 h 0.4161 0.4161 0.00 % 0.4482 7.71 % 
04:00 h 0.3490 0.3421 -1.98 % 0.3431 -1.69 % 
05:00 h 0.3556 0.3310 -6.92 % 0.3542 -0.39 % 
06:00 h 0.3448 0.3570 3.54 % 0.3878 12.47 % 
07:00 h 0.3433 0.3523 2.62 % 0.3693 7.57 % 
08:00 h 0.3286 0.3298 0.37 % 0.3499 6.48 % 
09:00 h 0.2592 0.2619 1.04 % 0.2724 5.09 % 
10:00 h 0.2258 0.2223 -1.55 % 0.2224 -1.51 % 
11:00 h 0.2963 0.3005 1.42 % 0.3048 2.87 % 
12:00 h 0.4915 0.5018 2.10 % 0.5041 2.56 % 
13:00 h 0.5547 0.5612 1.17 % 0.5608 1.10 % 
14:00 h 0.5321 0.5316 -0.09 % 0.5319 -0.04 % 
15:00 h 0.6833 0.6885 0.76 % 0.6887 0.79 % 

Table 10. Objective function results and computation time to find the solution. 
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5. Integration of power sharing algorithm into the ILEM and 
cybersecurity assessment  

5.1. Integration of power sharing algorithm into the ILEM 

The PSA is a module in the software ILEM (Intelligent Local Energy Management algorithm), 
which manages the whole PED. This section provides an overview of the main modules of ILEM 
and the procedure for the execution of the PSA integrated in there. A general description of the 
modules building up the ILEM is provided by Figure 36. 

 

Figure 36. Main modules building up the ILEM software. 
 

The ILEM is a software which is continuously running in an industrial PC located into the PED 
solution. The Main ILEM Application (MIA) encloses all the processes that are performed by the 
ILEM. The main functionalities of the ILEM are to communicate with the PCS, the SCADA and a 
web to execute the PSA in order to manage the hybrid storage system and to fulfill the scheduled 
power exchanging. 
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Figure 37. Distribution in time of the execution of the main processes carried out by ILEM. 
 

When MIA runs, it calls five independents, parallel and interconnected processes: (i) PCS Data 
Acquisition Application (DAA), (ii) the SCADA DAA, (iii) the ILEM Data Logger Application (DLA), 
(iv) the ILEM Webserver Application (WSA), (v) the ILEM Data Exchange Application (DEA) and 
(vi) the ILEM Mode Operation Application (MOA). 

 The PCS DAA is an application which communicates periodically (each half-second) with 
the PCS through MODBUS RTU, it plays the master role, it is continuously asking all the 
PCS and BMS data and writes punctually the set points.  

 The SCADA DAA is a permanent MODBUS server that collects all the ILEM data 
together with the PCS and BMS information. It awaits a valid external client in order to be 
commanded. In particular, the valid client is the SCADA.  

 The ILEM DLA is an application which stores the most relevant information from the 
whole PED in the physical memory. The information is kept up to a maximum of a year.  

 The ILEM WSA provides a bidirectional communication between the MIA and a web. In 
addition, this web can be used occasionally for managing manually the PED by a 
technical user. 

 The ILEM DEA is an application which manages the data between the three main sources 
PCS, SCADA and web. 

 Finally, the ILEM MOA is the application responsible of operating the PED. Figure 38 
depicts the state machine of ILEM which is performed by the MOA. 

 

When the MOA starts, all set points are reset. The application waits in default mode until an 
external order. In the default mode, the ILEM does not performs anything apart from 
communicating with the rest of the players.  

The Remote Automatic Mode (RAM) is the most usual operation mode. In this mode the ILEM 
performs three sub-applications the ILEM Power Sharing Application (PSA) and the ILEM Voltage 
Support Application (VSA).  

The ILEM PSA performs optimizations according to the BMS data and the scheduled power 
exchanging in order to determinate the best contribution of both storage systems in terms of 
power accuracy and battery degradation. 
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Figure 38. State-machine for the ILEM, executed by the Mode Operation Application (MOA). 
 

The ILEM VSA is an application which remains in a second phase until an external command. 
The purpose of it is to calculate the active and reactive powers contribution in order to achieve a 
desired voltage, according to specific grid constraints.  The Manual Remote Mode (RMM) is a 
specific mode for operating the PED as an external controllable battery. It can also execute the 
VSA but it cannot execute the PSA. Finally, the Local Manual Mode (LMM) is also a specific mode 
for debugging and configuring the PED, and also to operate manually the PED. 

 

 

Figure 39. Distribution in time of the execution of the main processes carried out by ILEM. Detail of the PSA algorithm 
(highlighted in green), as triggered by the MOA. 
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In detail the PSA runs once per hour for determining both lithium-ion and lead-acid batteries 
operation. The process, in turn, is composed by three different steps: 

 First step. When a new scheduled power exchanging profile arrives to the PED, the data 
from the BMS and PCS data are loaded to the PSA. Based on such data, the best solution 
for each of the three objective function terms of the PSA is determined (see section 3.3). 
As a reminder: 

o The first optimization criterion for the PSA is to minimize the discrepancy between 
the power output of the PED and the power scheduling profile. This corresponds 
to the optimization cost 𝑧 . The corresponding optimal solution is 𝑍∗. 

o The second optimization criterion for the PSA is to minimize the degradation cost 
for the batteries as function of excessive driving currents. This corresponds to 
the optimization cost 𝑧 . The corresponding optimal solution is 𝑍∗ . 

o The third optimization criterion for the PSA is to minimize the degradation cost 
for the batteries as function of excessive depth of discharge. This corresponds to 
the optimization cost 𝑧 . The corresponding optimal solution is 𝑍∗ . 

 Second step. Then, optimal costs 𝑍∗, 𝑍∗  and 𝑍∗  are applied to the optimization function 
𝑧 (see equation (35)). 

 Third step. The PSA algorithm is executed again, now considering the multi-objective 
optimization function 𝑧, as formulated in the previous step. 

Init

Minimize discrepancy 
between the PED output 

and the power schedule

 Minimize degradation due 

to excessive currents

 Minimize degradation 
due to the excessive 

depth of discharge

Size the objective function 
terms according to 
previous solutions

Load scheduled power 
exchaing profile and PED 

data

Solve the multi‐objective 
optimization problem

End

 

Figure 40. Execution procedure for the PSA. 
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5.2. Cybersecurity assessment 

5.2.1. Summary and scope 

The aim of this security check is the identification of typical application and configuration 
vulnerabilities of the public available services. This section gives an overview about the systems 
which were investigated, describes the testing approach and lists the recommendations and 
actions to take. 

This external security audit was based on a grey box approach where Joanneum Research 
investigated the provided IP address on a single host. 

5.2.2.  Result 

The host which were audited is secured by a whitelisting approach, which is a good and secure 
way to prevent public access. Therefore, the auditors were not able to access the host until the 
administrators whitelisted the IP address which were used for the audit. The security audit 
identified a total of one low and two medium vulnerabilities. All of them are stated in Table 11 
below and are described in more detail in the respective section. In addition, since the web 
application is still under development and the functionality could therefore not be tested, an 
information regarding the input validation can also be found in the table. 

Vulnerability Solution Threat level Reference 
SSH User 
Enumeration 

Upgrade SSH 
daemon 

Medium 5.2.3.6 

Unencrypted 
communications 

Applications should 
use transport-level 
encryption (SSL/TLS) 
to protect all 
communications 
passing between the 
client and the server. 
The Strict-Transport-
Security HTTP 
header should be 
used to ensure that 
clients refuse to 
access the server 
over an insecure 
connection. A 
recommendation of 
secure TLS version 
and secure cipher 
suits can be found in 
the appendix. 

Medium 5.2.3.6; Annex III 

Directory Listing Configure your web 
server to prevent 
directory listings for 
all paths beneath the 
web root 

Low 5.2.3.6 

Table 11. Result overview 
 

5.2.3.  Testing approach 

5.2.3.1. Method 

The tools, methods and techniques used for the security audit can by divided into following 
categories: 
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 Usage of general and publicly available analysis tools to detect vulnerabilities of public 
accessible services.  

 Use of experienced specialists to cover security issues which could not be detected 
automatically. 
 

5.2.3.2. Timetable 

The security check was performed at 22.07.2019 with the aim to identify security vulnerabilities. 

5.2.3.3. Information about the system to test 

The following information (Table 12) was provided by the project partner and builds the starting 
point for the security audit. 

IP address Description 
147.83.xx.xx PED Front End 

Table 12. Information provided 

5.2.3.4. Whois 

The whois result shows, that the IP range, the registrant as well as basic information like the 
company name and the company address are revealed. This information, however, is not of any 
concern. 

5.2.3.5. Censys 

Censys finds three open services for the given host and also exposes three version numbers. 
The Censys check shows, that not only the IP address which were used within this audit was 
whitelisted, but instead the host was exposed to the public as well. 

5.2.3.6. 147.83.xx.xx 

Port scan 
 

The following Table 13 shows the list of open ports and their corresponding services. 

Port Service Additional Output 
22/tcp SSH OpenSSH 7.4p1 Debian 

10+deb9u6 (protocol 2.0) 
80/tcp HTTP Apache/2.4.25 
443/tcp HTTPS no response 

Table 13. Port scan 
 

Services 
 

In this section, the found services are further investigated. 

OpenSSH 7.4p1 (Port 22) 

The ssh daemon exposes the used version, which makes it very easy to look for available 
vulnerabilities. Thus, if possible, we recommend to alternate the welcome message when a client 
connects to the service. 

User Enummeration 

Description: OpenSSH through 7.7 is prone to a user enumeration vulnerability due to not 
delaying bailout for an invalid authenticating user until after the packet containing the request has 
been fully parsed, related to auth2-gss.c, auth2-hostbased.c, and auth2-pubkey.c. 
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Solution: Upgrade the SSH daemon. 

Impact: 5.0 Medium 

CVE: CVE-2018-15473 

 

Webserver (Port 80/443) 
 

The webserver only responds on port 80 with the web control for the RESOLVD system. In 
general, any web application should use HTTPS to ensure integrity and confidentiality. Thus, 
HTTP on port 80 should be disabled and any content should be moved to use HTTPS. 

Unencrypted communications 

Description: The application allows users to connect to it over unencrypted connections. An 
attacker suitably positioned to view a legitimate user's network traffic could record and monitor 
their interactions with the application and obtain any information the user supplies. Furthermore, 
an attacker able to modify traffic could use the application as a platform for attacks against its 
users and third-party websites. Unencrypted connections have been exploited by ISPs and 
governments to track users, and to inject adverts and malicious JavaScript. Due to these 
concerns, web browser vendors are planning to visually flag unencrypted connections as 
hazardous. To exploit this vulnerability, an attacker must be suitably positioned to eavesdrop on 
the victim's network traffic. This scenario typically occurs when a client communicates with the 
server over an insecure connection such as public Wi-Fi, or a corporate or home network that is 
shared with a compromised computer. Common defenses such as switched networks are not 
sufficient to prevent this. An attacker situated in the user's ISP or the application's hosting 
infrastructure could also perform this attack. Note that an advanced adversary could potentially 
target any connection made over the Internet's core infrastructure. Please note that using a 
mixture of encrypted and unencrypted communications is an ineffective defense against active 
attackers, because they can easily remove references to encrypted resources when these 
references are transmitted over an unencrypted connection. 

Threat Level: Medium 

Solution: Applications should use transport-level encryption (SSL/TLS) to protect all 
communications passing between the client and the server. The Strict-Transport-Security HTTP 
header should be used to ensure that clients refuse to access the server over an insecure 
connection. Also, when using TLS, it is essential to also use secure cipher suits. A 
recommendation can be found in the Annex III. 

CWE: 326 

Directory listing 

Description: Web servers can be configured to automatically list the contents of directories that 
do not have an index page present. This can aid an attacker by enabling them to quickly identify 
the resources at a given path, and proceed directly to analyzing and attacking those resources. It 
particularly increases the exposure of sensitive files within the directory that are not intended to 
be accessible to users, such as temporary files and crash dumps. Directory listings themselves 
do not necessarily constitute a security vulnerability. Any sensitive resources within the web root 
should in any case be properly access-controlled, and should not be accessible by an 
unauthorized party who happens to know or guess the URL. Even when directory listings are 
disabled, an attacker may guess the location of sensitive files using automated tools. 

Threat Level: Low 

Solution: There is not usually any good reason to provide directory listings, and disabling them 
may place additional hurdles in the path of an attacker. This can normally be achieved in two 
ways: 
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Configure your web server to prevent directory listings for all paths beneath the web root; 

Place into each directory a default file (such as index.htm) that the web server will display instead 
of returning a directory listing. 

CWE: 538, 548 

 

PED Front-End 
 

The PED web application is still under development and therefore could only be partly audited. 
The audited part of the application consists of single HTML, a single Javascript file as controller 
(resolvd_controller.js), and some images and css files. Since any code that would connect to the 
backend, which is not implemented yet, is not in use, no functionality can be audited. However, 
the Javascript controller consists of some client side input validation, which should be validated 
on the server side (backend). This is due to the fact that client side validation can be easily 
circumvented using interception proxies. 
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6. Conclusions 

This report summarizes the work done in regard of the development of the so-called Power 
Sharing Algorithm (PSA). The PSA is one of the algorithms composing the local controller of the 
Power Electronics Device (PED). The PED development is the main goal of Work Package 2 of 
the RESOLVD project. The main objective of this deliverable was to the report the design the 
PSA, evaluate its performance and assess its integration as one of the modules of the Intelligent 
Local Energy Manager (ILEM) software (also addressing the cybersecurity aspect), which is the 
software in charge of connecting the Power Electronics Device (PED) with the rest of the power 
network. 

The PSA has been defined as a multi-objective criteria optimization algorithm. It receives a time-
dependent power profile set-point from the network operator, and distributes it among the different 
battery types embedded into the PED. This way, it triggers an internal power sharing, based on 
the criteria of maximum performance and minimum battery degradation. From a literature review, 
two degradation mechanisms for batteries were identified as most important for the purposes of 
the present project: the power developed by batteries, and the depth of discharge. Based on that, 
the PSA incorporated constraints to penalize degradation. 

To design the PSA, batteries were firstly characterized. While the parameters for the lead-acid 
battery were directly obtained from the manufacturer, the parameters for the lithium-ion pack were 
derived from laboratory tests. Results were translated into a simulation model, that reliably 
represent the dynamic behavior of the batteries while charging and discharging. This simulation 
model of batteries, along with the simulation model of the associated power electronics, 
completed a simulation platform for the whole PED. 

As a multi-objective criteria optimization algorithm, each time the PSA is executed it is in fact 
solved four times. Tests performed and reported in this deliverable indicated that considering 
time-dependent power profile series of 24 set-points, the time needed for carrying out such four 
executions for the PSA is just few seconds at most. Thus, formulating this as a multi-objective 
criteria problem, it becomes feasible to be applied on field for the purposes of the project. 

Then, to test the PSA, two different exercises were carried out. The first one aims to test the PSA 
while driven by an arbitrary, academic time-dependent power profile set-point.  The results of this 
exercise show that the PSA reliably fit the response of the PED to the requirements of the network 
operator while still minimizing degradation of the batteries (e.g. higher power rates were 
experienced by the lithium-ion pack and not by the lead-acid pack, and minimum SOCs for 
batteries were respected all times. The second exercise tested the PSA while driven by a realistic 
time-dependent power profile set-point provided by the Grid Operation Scheduler. 

For this second exercise, an iterative procedure was needed. Fifteen iterations were carried out 
(emulating the behavior of the algorithms during the first fifteen hours of a day). Results of such 
iterative process show how the PSA manages the charging and discharging of the batteries 
following the power set-points from Grid Operation Scheduler. Little discrepancy between the 
requested power and the developed by the PED is noticed. In fact, the output of the PED mostly 
fits with the requested value for most of the evaluated time periods, and for those presenting 
discrepancies, the error with respect to power demand is lower than 10%. Both algorithms, PSA 
and Grid Operation Scheduler, presented also a good performance while estimating battery SOC. 
In particular, the error for both algorithms in SOC estimation was below 10% for almost all 
evaluated cases. 

After PSA design and test, this was presented as a part of the ILEM and cybersecurity aspect 
was assessed, motivated by the fact that the ILEM is actually exchanging information with other 
agents of the network. The cybersecurity check was based on a grey box approach where the 
provided IP address was investigated on a single host. The conclusions for this exercise are that 
the host is secured by a whitelisting approach, which is a good and secure way to prevent public 
access. The security audit identified a total of one low and two medium vulnerabilities. These 
vulnerabilities were in regard of SSH user enumeration; unencrypted communications; and weak 
directory listing. 
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Annex I: Simulation model in Matlab Simulink of the Power 
Electronics Device (PED) including batteries 

This annex describes the simulation platform built in Matlab Simulink utilized for the purposes of 
the work in the task 2.3. This model complements the one built in deliverable 2.1 of RESOLVD 
project (corresponding to the task 2.1). The differences among the models are that the one 
presented here is averaged and includes the battery model. It is averaged because of the fact 
that power converters are modeled as controllable ideal voltage sources. Since averaged, the 
model can be utilized to simulate the behavior (i.e. current and voltage dynamics, power flow 
among components, electrical stability of associated controllers) of the system for long periods of 
time, e.g. charge or discharge processes for batteries for hours. As a reminder, in the non-
averaged model in 2.1, the power converters were treated as actual H-bridges from which 
switching and conduction losses of semiconductors could be estimated, the behavior of the 
system against eventualities like short circuits as well. A non-averaged model can, however, be 
utilized to simulate short periods of time, e.g. some seconds, because of the high computational 
effort involved. This is the main drawback of a non-averaged model and for this reason it is not 
suitable for this task 2.3. 

Figure 41 firstly presents the main blocks of the simulation model. As shown, the model is 
composed by 4 main Blocks (blocks A, B, C and D). Block E just collects all plotting scopes. The 
front-end inverter of the PED is represented by Block A. Block B contents the dc-link interfacing 
the dc side of the front-end inverter with the dc-dc converters in Blocks C and D. These Blocks C 
and D, in addition, includes the model of the two batteries included in the system. 

 

Figure 41. General description of Matlab Simulink model for the Power Electronics Device (PED) including two 
batteries. Block A: Front-end inverter; Block B: dc-link; Block C: dc-dc converter and battery 1; Block D: dc-dc converter 

and battery 2; Block E: Plotting scopes. 
 

Block A is again presented in Figure 42. As shown, the front end inverter and the external grid 
are modelled adopting the Park’s qd0 frame [7]. The advantage of doing so, is that voltage and 
current waveforms are not sinusoidal, but constant in time. This reduces computational effort for 
the model. The voltage across each of axis of the Park’s frame with respect to ground in the model 
by three voltage sources. Such voltage sources are connected to a resistance and inductance in 
series, characterizing the short-circuit impedance of the grid. Then, the grid is connected to three 
controllable voltage sources again, which actually model the front-end inverter. 

 

 

 

 

Block A Block B Blocks C and D 

Block E 
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Figure 42. Detail of Block A: front end inverter and external ac network. 

The qd0 voltages synthetized at the converter terminals are managed by the block in green “Grid 
Side Converter Controller.” A detail of such controller is depicted in Figure 43. As can be noted, 
there are two control loops, each providing the voltages to be synthetized by the converter at its 
terminals through the q and d axis. For the q axis, there are two control loops in cascade. The 
outer control loop is in charge of managing the dc-link voltage 𝐸. The output of such control loop 
provides the current setpoint 𝑖∗  for the inner control loop. The controller for the Grid Side 
Converter is widely described in [1]. 

 

Figure 43. Detail of Grid Side Converter Controller. 

For completeness though, the contents in the blocks “d current controller” and “q current 
controller” are presented in Figure 44 and Figure 45. Contents in the block “DC link voltage 
controller” are presented in Figure 46. 

 

Figure 44. Detail of “d current controller”. 
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Figure 45. Detail of “q current controller”. 

 

Figure 46. Detail of “DC link voltage controller”. 

Block B models the interface between the dc side of the front end inverter and the dc-dc 
converters in blocks C and D integrating two battery packs. A detail of Block B is presented in 
Figure 47. 

 

Figure 47. Detail of Block B: dc-link. 

As can be noted, the dc-link model is composed by a current source 𝑖 _ , weighting the dc 
current at the dc-side of the front end inverter; a capacitor; and a current source 𝑏𝑎𝑡_𝑖_𝑑𝑐, 
weighting the dc current injected or subtracted from the dc-link by the batteries. Thus, a constant 
dc-link voltage 𝐸 is given by the equilibrium among the current 𝑖 _  and 𝑏𝑎𝑡_𝑖_𝑑𝑐. Any mismatch 
among these two magnitudes is to be translated into a current injected or provided by the dc-link 
capacitor, thus varying its energy stored and, as a consequence, the voltage 𝐸. 

The equations calculating the current 𝑖 _  are in the block “Calculation of iclq_dc” in Figure 47. 
A detail of such block is presented in Figure 48.  
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Figure 48. Detail of Block “Calculation of iclq_dc”. 

Analogously, the equations calculating the current 𝑏𝑎𝑡_𝑖_𝑑𝑐 are presented in the block 
“Calculation of bat_i_dc” in Figure 47. A detail of such block is presented in Figure 49. 

 

Figure 49. Detail of Block “Calculation of bat_i_dc”. 

Blocks C and D are almost identical. They just differ in the input data they received, characterizing 
the two battery packs. A detail of Block C is firstly introduced in Figure 50. 

 

Figure 50. Detail of Block C, dc-dc converter and battery 1. 

This Block C includes the modeling of a dc-dc converter (shadowed in light blue in Figure 50), 
along with an inductive filter (filter 𝐿1) and the battery 1. As noted, the battery is modeled as a 
resistance in series with a voltage source. As introduced in section 2.2, the internal resistance of 
the cell slightly varies for charging or discharging circumstances, and this is why in the model this 
is represented, in fact, as a two different resistances in parallel. The voltage source weights the 
voltage at the terminals of the battery in the case it is in open circuit. The value of such voltage 
(i.e. the open circuit voltage, 𝑂𝐶𝑉 𝑧 ) depends on the state of charge (𝑧) of the battery. So 
mathematical expressions should be included in the model to estimate the state of charge and 
derive the voltage 𝑂𝐶𝑉 𝑧 . These are included in the block “Battery 1 model” in Figure 51. A 
detail of what is inside such block is presented in Figure 52. 
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Figure 51. Detail of Block “Battery 1 model”. 

Equations for state of charge and open circuit voltage estimation are in the box “LITHIUM ION 
BATTERY” (see the code in Figure 52). All input data for such box should be derived from 
manufacturer datasheets or experimental tests. 

function [z_k_plus_1,ocv_k] = fcn(i_k,z_k,soc_ocv_lookuptable, 
ocv_ocv_lookuptable,eta,Delta_t,C_n) 

  
ocv_k = interp1(soc_ocv_lookuptable,ocv_ocv_lookuptable,z_k, 
'linear','extrap'); 
z_k_plus_1 = z_k + ( eta * Delta_t / C_n ) * i_k; 

 

Figure 52. Detail of box “LITHIUM ION BATTERY”. 

Then, the dc-dc converter integrating each of the batteries, as represented in Figure XX, is 
modeled as a controllable voltage source which synthetizes a voltage 𝑏𝑎𝑡1_𝑢𝑐. Depending on the 
magnitude of this voltage with respect to the voltage of the battery 𝑏𝑎𝑡1_𝑢𝑡, the battery is being 
charged or discharged. Thus, the control of such voltage 𝑏𝑎𝑡1_𝑢𝑐 is, in fact, the duty for the 
associated controller in the green block in Figure 50 “DC-DC CONV. CONTROLLER BAT 1”. A 
detail of such controller is offered in Figure 53. 

 

Figure 53. Detail of box “DC-DC CONV. CONTROLLER BAT 1”. 

As depicted in Figure 53, the voltage control is equipped with an antiwindup. A graphical 
description on how such anti-windup is implemented, is offered in Figure 54 and Figure 55. 

 

Figure 54. Detail of box “Voltage control PI with anti-windup”. 
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Figure 55. Detail of box “PI” in the “Voltage control PI with anti-windup”. 

Prior executing the simulation model, the input parameters should be defined. For that, Matlab 
script has been built. For completeness, this is included in the following. 

 

%% ----------------------------------------------------------------- % 
Hybrid energy storage system integrating two battery packs through two 
dc-dc converters in parallel and connected to the dc-link of a front 
end inverter. 
 
Date and version: 30.04.2019, v1.0 
% ------------------------------------------------------------------ % 
  
%% INITIALIZATION 
    clear all; 
    clc; 
  
%% GRID PARAMETERS 
  
    g.Ul=400;           % (V) - Line RMS voltage (Phase-to-Phase) 
    g.Uf=g.Ul/sqrt(3);  % (V) - Phase RMS voltage 
    g.Ufp=g.Uf*sqrt(2); % (V) - Phase peak voltage 
    g.F=50;             % (Hz)- Frequency 
    g.R=0.3;            % (Ohms) - Line resistance 
    g.L=0.005;          % (H)    - Line impedance 
    g.lambda=g.L/g.R;   % (-)    - Time constant 
  
%% FRONT-END INVERTER PARAMETERS 
  
    dc.E=800;               % (V) - Rated dc-link voltage 
    dc.C=0.01;              % (F) - dc-link capacitance 
    inv.P=40000;            % (W) - Inverter power 
    inv.current=inv.P/dc.E; % (A) - Maximum current for the inverter 
  
%% FRONT-END INVERTER CONTROLLERS 
  
% DC-LINK CONTROLLER 
  
    % TO BE SELECTED BY THE DESIGNER 
    dc.w=5;  % (rad/s) - Natural frequency 
    dc.xi=1; % (-)     - Damping coefficient 
  
    % CALCULATIONS 
    dc.k=g.Ufp/dc.E;             % (-) 
    dc.Kp=4*dc.C*dc.xi*dc.w/(3*dc.k); % (-) - Proportional gain 
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    dc.Ki=2*dc.C*(dc.w)^2/(3*dc.k);   % (-) - Integral gain 
    dc.maxsat= dc.E*1.2;              % (V) - Maximum voltage 
    dc.minsat=g.Ul/(2*dc.E/sqrt(3));  % (V) - Minimum voltage 
    g.Uf_security=0.1;                % (p.u.) – Adm. voltage var. 
    dc.ilq=inv.P*2/(g.Ufp*(1-g.Uf_security)*3); % (A) – Max. current. 
  
% Q-CURRENT CONTROLLER 
  
    % TO BE SELECTED BY THE DESIGNER 
    q.w=100; % (rad/s) - Natural frequency 
    q.xi=1;  % (-)     - Damping coefficient 
  
    % CALCULATIONS 
    q.Kp=g.L/g.lambda; % (-) - Proportional control gain 
    q.Ki=g.R/g.lambda; % (-) - Integral control gain 
  
% D-CURRENT CONTROLLER 
  
    % TO BE SELECTED BY THE DESIGNER 
    d.w=100; % (rad/s) - Natural frequency 
    d.xi=1;  % (-)     - Damping coefficient 
  
    % CALCULATIONS 
    d.Kp=g.L/g.lambda; % (-) - Proportional control gain 
    d.Ki=g.R/g.lambda; % (-) - Integral control gain 
  
%% BATTERY 1: LITHIUM-ION 
  
    % CELL PARAMETERS 
    bat1.Rd_cell = 0.2648;  % (Ohm) - Discharge resistance 
    bat1.Rc_cell = 0.2430;  % (Ohm) - Charge resistance 
    bat1.eta = 1;           % (-)   - Couloumbic efficiency 
    bat1.Delta_t = 0.01;    % (s)   - Time step 
    bat1.C_n_cell = 7200;        % (As)  - Cell capacity 
    bat1.soc_ocv_lookuptable = [0.0066 0.1004 0.2004 0.3003 0.4002 
0.5002 0.6001 0.7000 0.8000 0.8999 0.9998]'; 
    bat1.ocv_ocv_lookuptable_cell = [3.2472 3.4658 3.5546 3.5987 
3.6254 3.6645 3.7531 3.8397 3.9400 4.0502 4.1763]'; 
     
    % PACK PARAMETERS 
    bat1.Nseries = 333; 
    bat1.Nparallel = 200; 
    bat1.Rd_pack = bat1.Rd_cell*bat1.Nseries/bat1.Nparallel; 
    bat1.Rc_pack = bat1.Rc_cell*bat1.Nseries/bat1.Nparallel; 
    bat1.C_n_pack = bat1.C_n_cell*bat1.Nparallel; 
    bat1.ocv_ocv_lookuptable_pack = bat1.Nseries*[3.2472 3.4658 3.5546 
3.5987 3.6254 3.6645 3.7531 3.8397 3.9400 4.0502 4.1763]'; 
    bat1.Unom_pack = mean(bat1.ocv_ocv_lookuptable_pack); 
    bat1.Uexp_pack = max(bat1.ocv_ocv_lookuptable_pack); 
    bat1.Umin_pack = min(bat1.ocv_ocv_lookuptable_pack); 
  
%% DC-DC CONVERTER PARAMETERS FOR BATTERY 1: LITHIUM-ION 
  
    bat1.L = 0.005; % (H) - Inductance between converter and battery 
    bat1.P = 20e3;  % (W) - Rated power 
    bat1.Irated = bat1.P / bat1.Umin_pack;  % (A) - Rated current 
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%% DC-DC CONVERTER CONTROLLERS FOR BATTERY 1: LITHIUM-ION 
  
% VOLTAGE CONTROLLER  
  
    % TO BE SELECTED BY THE DESIGNER 
    bat1.wu=1;    % (rad/s) - Natural frequency 
    bat1.xiu=0.7; % (-)     - Damping coefficient 
     
    % CALCULATIONS 
    bat1.C=(bat1.C_n_pack*(bat1.Uexp_pack + 
bat1.Unom_pack))/((bat1.Uexp_pack^2)-(bat1.Unom_pack^2)); % (F) 
    bat1.Kpu=2*bat1.xiu*bat1.wu*bat1.C;  % (-) - Proportional gain 
    bat1.Kiu=bat1.wu^2*bat1.C;           % (-) - Integral gain 
     
% CURRENT CONTROLLER 
  
    % TO BE SELECTED BY THE DESIGNER 
    bat1.wi=20;   % (rad/s) - Natural frequency 
    bat1.xii=0.7; % (-)     - Damping coefficient 
     
    % CALCULATIONS 
    bat1.Kpi=2*bat1.xii*bat1.wi*bat1.L/dc.E; % (-) - Proportional gain 
    bat1.Kii=bat1.wi^2*bat1.L/dc.E;          % (-) - Integral gain 
  
%% BATTERY 2: LEAD-ACID 
  
    % CELL PARAMETERS 
    bat2.Rd_cell = 0.2648;  % (Ohm) - Discharge resistance 
    bat2.Rc_cell = 0.2430;  % (Ohm) - Charge resistance 
    bat2.eta = 1;           % (-)   - Couloumbic efficiency 
    bat2.Delta_t = 0.01;    % (s)   - Time step 
    bat2.C_n_cell = 75*3600;        % (As)  - Cell capacity 
    bat2.soc_ocv_lookuptable = [0.0066 0.1004 0.2004 0.3003 0.4002 
0.5002 0.6001 0.7000 0.8000 0.8999 0.9998]'; 
    bat2.ocv_ocv_lookuptable_cell = [10.8 10.9 11.1 11.5 12 12.05 12.1 
12.2 12.7 13.1 13.5]'; 
     
    % PACK PARAMETERS 
    bat2.Nseries = 24; 
    bat2.Nparallel = 1; 
    bat2.Rd_pack = bat2.Rd_cell*bat2.Nseries/bat2.Nparallel; 
    bat2.Rc_pack = bat2.Rc_cell*bat2.Nseries/bat2.Nparallel; 
    bat2.C_n_pack = bat2.C_n_cell*bat2.Nparallel; 
    bat2.ocv_ocv_lookuptable_pack = bat2.Nseries*[3.2472 3.4658 3.5546 
3.5987 3.6254 3.6645 3.7531 3.8397 3.9400 4.0502 4.1763]'; 
    bat2.Unom_pack = mean(bat2.ocv_ocv_lookuptable_pack); 
    bat2.Uexp_pack = max(bat2.ocv_ocv_lookuptable_pack); 
    bat2.Umin_pack = min(bat2.ocv_ocv_lookuptable_pack); 
  
%% DC-DC CONVERTER PARAMETERS FOR BATTERY 2: LEAD-ACID 
  
    bat2.L = 0.005; % (H) - Inductance between converter and battery 
    bat2.P = 20e3;  % (W) - Rated power 
    bat2.Irated = bat2.P / bat2.Umin_pack;  % (A) - Rated current 
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%% DC-DC CONVERTER CONTROLLERS FOR BATTERY 2: LEAD-ACID 
  
% VOLTAGE CONTROLLER  
  
    % TO BE SELECTED BY THE DESIGNER 
    bat2.wu=1;    % (rad/s) - Natural frequency 
    bat2.xiu=0.7; % (-)     - Damping coefficient 
     
    % CALCULATIONS 
    bat2.C=(bat2.C_n_pack*(bat2.Uexp_pack + 
bat2.Unom_pack))/((bat2.Uexp_pack^2)-(bat2.Unom_pack^2)); % (F)  
    bat2.Kpu=2*bat2.xiu*bat2.wu*bat2.C;  % (-) - Proportional gain 
    bat2.Kiu=bat2.wu^2*bat2.C;           % (-) - Integral gain 
     
% CURRENT CONTROLLER 
  
    % TO BE SELECTED BY THE DESIGNER 
    bat2.wi=20;   % (rad/s) - Natural frequency 
    bat2.xii=0.7; % (-)     - Damping coefficient 
     
    % CALCULATIONS 
    bat2.Kpi=2*bat2.xii*bat2.wi*bat2.L/dc.E; % (-) - Proportional gain 
    bat2.Kii=bat2.wi^2*bat2.L/dc.E;          % (-) - Integral gain 
     
%% SETPOINTS AND INITIAL CONDITIONS FOR SIMULATION 
  
    % INITIAL CONDITIONS 
    bat1.initial_z = 0.7; 
    bat1.initial_ocv = 
interp1(bat1.soc_ocv_lookuptable,bat1.ocv_ocv_lookuptable_pack, 
bat1.initial_z,'linear','extrap'); 
    bat2.initial_z = 0.7; 
    bat2.initial_ocv = 
interp1(bat2.soc_ocv_lookuptable,bat2.ocv_ocv_lookuptable_pack, 
bat2.initial_z,'linear','extrap'); 
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Annex II: Least-squares estimation theory for the adjustment of 
the parameters of the battery model 

Model parameters can be derived from a procedure in which the response of simulation models 
is fitted to the real performance of battery cells. To do so, model equations may be discretized, to 
fit with time step of collected data from measurement devices. In this sense, the above presented 
discretized model equations are useful. Following subsections present the procedures that permit 
to obtain model parameters. 

The basis for least-squares estimation theory are explained in [5]. The idea behind this theory 
is that a response variable 𝑌 characterizing a system, can be partly explained by the variation of 
the other variables in the model, called covariables 𝑋. Given the value of 𝑋, the best prediction of 
𝑌 is the mean of function 𝑓 𝑋 . So the actual response 𝑌 is function of 𝑓 𝑋  plus a noise, 

𝑌 𝑓 𝑋 𝑛𝑜𝑖𝑠𝑒 (41) 
 

The function 𝑓 𝑋  is a regression function. Regression parameters are collected in vector 𝛽
𝛽 , … , 𝛽  and in case of linear regression, 𝑓 𝑋  –now 𝑓 𝑋 -- can be written as 𝑓 𝑋

𝑋 𝛽 . . . 𝑋 𝛽 . Given 𝑘 samples of measured data (and 𝑝 𝑘), we can define a vector for 
measured response 𝑦 𝑦 , … , 𝑦 , and the matrix for observed data 𝑋, 

𝑋
𝑥 , ⋯ 𝑥 ,

⋮ ⋱ ⋮
𝑥 , ⋯ 𝑥 ,

 (42) 

The idea is to find the best estimation for regression parameters, 𝛽, that minimizes the error 
between the response of the system and the linear regression of observed data. Such estimation 
for regression parameter 𝛽, is named least-squares estimator, and is that over all possible value 
𝑏 that minimizes 

𝑦 𝑓 𝑥  (43) 

For a linear regression, and in case 𝑋 has full column rank, so no column can be written as linear 
combination of other columns, the least squares estimator 𝛽 can be calculated by, 

𝛽 𝑋 𝑋 𝑋 𝑦 (44) 
 

Let’s apply least-squares estimation theory for the identification of the parameters of the Simple 
model. In this model (see equation (1), in section 2.2.1.1), the response variable would be the cell 
voltage 𝑦 . However, variable 𝑂𝐶𝑉 𝑧  cannot be considered as a direct observable variable while 
charging and discharging a battery, so cannot be included as part of matrix 𝑋. Instead, the 
relationship between the open circuit voltage of the cell and the state of charge, 𝑂𝐶𝑉 𝑧  should 
be derived from specific discharge tests at very low discharge rate. So, while adopting the data 
for model parameters identification, that relationship 𝑂𝐶𝑉 𝑧  is considered as known. Then, as 
the measurable variable 𝑌, instead of considering the cell voltage 𝑦 , it will be, for any k-th time, 
the expression 

𝑌 𝑦 𝑂𝐶𝑉 𝑧 , … , 𝑦 𝑂𝐶𝑉 𝑧  (45) 
 

This output, or response variable, can be explained by the variation in the other co-variables, 
building matrix 𝑋 as, 

𝑋 𝑥 , … 𝑥  (46) 

and the rows for 𝑋 are, 
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𝑥 𝑖 , 𝑖  (47) 
 

And the vector for unknown parameters 

𝛽 𝑅 , 𝑅  (48) 
 

Then, the output of the system 𝑌 can be calculated as 

𝑌 𝑋𝛽 (49) 

and the least square estimator 𝛽 is calculated as 

𝛽 𝑋 𝑋 𝑋 𝑌 (50) 
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Annex III: Cybersecurity analysis – Secure TLS and Secure 
Cipher Suits 

Transport Layer Security (TLS) is the secure successor of SSL. However, there are differences 
between each version of TLS. To make it short, TLS should only be used as version 1.2 and the 
latest version 1.3. Also, when using TLS it is essential to only enable secure cipher suits which 
are listed in Table 14. 

TLSv1.2 TLSv1.3 
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 TLS_AES_128_GCM_SHA256 
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS_AES_128_CCM_SHA256 
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 TLS_AES_256_GCM_SHA384 
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384  

Table 14. Secure Cipher Suits 
 

 


