

Grant Agreement No.: 773715

Project acronym: RESOLVD

Project title: Renewable penetration levered by Efficient Low Voltage

Distribution grids

Research and Innovation Action

Topic: LCE-01-2016-2017

Next generation innovative technologies enabling smart grids, storage and

energy system integration with increasing share of renewables: distribution

network

Starting date of project: 1st of October 2017

Duration: 36 months

D4.1 – Detailed description of the platform

Organization name of lead contractor for this deliverable: ICOM

Due date: M12 - 30th of September 2018

Submission Date: 30th of September 2018

Primary Authors Isidoros Kokos, Kostas Tsakalos, Michael Houhoulis, Anna Tatsaki, Ilias
Lamprinos (ICOM)

Contributors Luisa Candido (EYPESA)
Ferran Torrent (UdG)
Francesc Girbau (UPC)

Version Version 1.0 – Final Version

Dissemination Level

PU Public X

CO
Confidential, only for members of the consortium (including the
Commission Services)

DISCLAIMER
This document reflects only the author's view and the Agency is not responsible for any use that

may be made of the information it contains.

2

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Deliverable reviews

Contributions of partners

Description of the contribution of each partner organisation to the work presented in the
deliverable.

Partner Contribution

UdG Data models of external services.

UPC Data model of PED status.

SIN -

JR Final review of the document.

ICOM Editor and main contributor.

EYPESA Operation Application user interface design, Data Models of Legacy Systems.

CS -

Revision table for this deliverable:

Version 0.3

Reception
Date

24 of September 2018

Revision
Date

28 of September 2018

Reviewers Heribert Vallant (JR)

Version 1.0 Reception
Date

29 of September 2018

Revision
Date

30 of September 2018

Reviewers Ilias Lamprinos (ICOM)

3

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Table of contents

Acronyms and abbreviations ... 5

Executive Summary .. 7

1. Introduction... 9
1.1. RESOLVD Project ... 9
1.2. Objectives and Methodology .. 9
1.3. Report structure .. 9

2. RESOLVD Platform .. 11
2.1. Overview ... 11
2.2. Design Principles .. 11
2.3. High Level Architecture ... 13

3. The Enterprise Service Bus ... 15
3.1. Overview ... 15
3.2. Design Principles .. 17
3.3. Architecture ... 19

3.3.1. Logical View ... 19
3.3.2. Process View ... 20
3.3.3. Physical View ... 22

3.4. Components Design ... 23
3.4.1. Middleware .. 23

3.4.1.1. Description .. 24
3.4.1.2. Internal Logic .. 24
3.4.1.3. Interfaces .. 24

3.4.2. Business Process Engine .. 24
3.4.2.1. Description .. 24
3.4.2.2. Internal Logic .. 25
3.4.2.3. Interfaces .. 25

3.4.3. ExtAdapter ... 26
3.4.3.1. Description .. 26
3.4.3.2. Internal Logic .. 26
3.4.3.3. Interfaces .. 26

3.4.4. Data Access Manager ... 27
3.4.4.1. Description .. 27
3.4.4.2. Internal Logic .. 27
3.4.4.3. Interfaces .. 27

3.4.5. Service Manager .. 27
3.4.5.1. Description .. 27
3.4.5.2. Interfaces .. 28

3.4.6. Security Access Manager .. 28
3.4.6.1. Description .. 28
3.4.6.2. Interfaces .. 28

3.4.7. System Manager .. 28
3.4.7.1. Description .. 28
3.4.7.2. Internal Logic .. 29
3.4.7.3. Interfaces .. 29

3.5. Graphical User Interface Design ... 29
3.6. External Interfaces Design .. 29
3.7. Data design ... 31

3.7.1. Canonical Data Model ... 31
3.7.2. External Data ... 32

4. The Data Analytics Platform ... 38

4

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

4.1. Overview ... 38
4.2. Design Principles .. 39
4.3. Architecture ... 41
4.4. Components Design ... 42

4.4.1. Analytics Service ... 42
4.4.2. Visualization Service.. 42
4.4.3. Data Hub .. 42
4.4.4. Access Control ... 42

4.5. User Interface Design ... 43
4.6. External Interfaces Design .. 43
4.7. Data design ... 44

5. AAA Server... 47

6. Operation Applications ... 51
6.1. Overview ... 51
6.2. Design Principles .. 52
6.3. Architecture ... 52
6.4. Internal Logic .. 54
6.5. Graphic User Interface Design ... 54

7. Conclusions .. 62

References .. 63

5

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Acronyms and abbreviations

AAA Authentication, Authorization and Accounting

API Application Programming Interface

BPE Business Process Engine

CEF Critical Event Forecaster

CEPA Critical Event Prevention Application

CDI Contexts and Dependency Injection (JAVA)

CIM Common Information Model

CSS Cascading Style Sheets

DAP Data Analytics Platform

DBMS Database Management System

DMS Distribution Management System

DoW Description of Work

DSO Distribution System Operator

EF Energy Forecaster

ESB Enterprise Service Bus

FDA Fault Detection Application

GIS Geographic Information System

GOS Grid Operation Scheduler

HDFS Hadoop Distributed File System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IEC International Electrotechnical Commission

IPMA Island Power Management Application

JSON JavaScript Object Notation

JMS Java Message Service

KPI Key Performance Indicator

LRA Loss Reduction Application

MDMS Meter Data Management System

MOM Message Oriented Middleware

NTLFDA Non-Technical-Loss-Fraud Detection Application

PED Power Electronic Device

PFS Power Flow Simulator

PMU Phasor Measurement Unit

PQM Power Quality Monitoring

RDF Resource Description Framework

REST REpresentational State Transfer

RPC Remote Procedure Call

SCADA Supervisory Control and Data Acquisition system

SG Smart Grid

SM Smart Meter

SOA Service Oriented Architecture

SoC State of Charge

SOAP Simple Object Access Protocol

UC Use Case

UI User Interface

http://searchwindevelopment.techtarget.com/definition/HTTP

6

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

WAMS Wide Area Monitoring System

XML Extensible Markup Language

http://searchsoa.techtarget.com/definition/XML

7

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Executive Summary

The RESOLVD project aims at increasing the observability and controllability of Low Voltage (LV)

electricity distribution networks with the use of innovative ICT, power electronic and sensor

infrastructures.

This report documents the design of the software platform to be used by the DSOs (namely the

RESOLVD platform), providing a detailed description of its subsystems and the interactions

among each other, with external systems and services, as well as with the end-users. The report

presents the results of the work done in the context of task T4.1 “Enterprise Service Bus” and

T4.2 “Data Analytics Platform” and is highly related to previous work of the project: D1.1 – “Use

cases definition”1, D1.2 “Functional and operational requirements” and D1.3 – “Interoperability

and Integration Analysis and Requirements”.

The presentation of each level of the design follows a specific pattern. Initially, an overview of the

system and constraints guiding the design process are presented, followed by the rationale of the

final design: e.g. specific architectural patterns, standards, use of third party software

tools/libraries. The documentation of the high-level design, presents different architectural views

(where appropriate), according to ISO/IEC/IEEE 42010:2011 “Systems and software

engineering—Architecture description”. Furthermore, on a subsystem basis a detailed design is

presented, detailing the interfaces, internal logic and relevant data models. Unified Modelling

Language notation, was utilized where possible, for describing static and/or dynamic behaviour

and internal logic of the detailed design.

Initially the High-Level Architecture of the Platform is presented, depicting its main subsystems:

the Enterprise Service Bus (ESB), acting as an integration middleware; the Data Analytics

Platform (DAP), acting as a central data repository and data analysis and visualization provider;

the Authentication, Authorization and Accounting (AAA) Server, serving as the security

infrastructure; and the Operation Applications, managing advanced grid operations and providing

a UI for end-users (the DSO). The architectural design decisions, mainly concern the adoption of

Smart Grid standards (i.e. IEC 61968), a widely used standards aiming at interoperable

communication of legacy systems in the domain of the Distribution Grids; the use of the service

based architectural principles of Service Oriented Architecture (SOA), for achieving reusability

and loose coupling; the adoption of a central data repository, for mitigating problems related to

data accessibility and reducing the communication traffic to production infrastructure of the DSO;

as well as security mechanisms, aiming to facilitate the integration of security in a network of

services.

The Enterprise Service Bus (ESB) is the infrastructure enabling the seamless integration of data

exchanges and services and provide loose coupling of applications. Its design was based on the

functional and non-functional requirements documented in D1.2 and D1.3 and under constraints

related to performance, security and data privacy. The IEC 61968 standard was used as a

guideline in the design process and led in the adoption of Common Information Model (CIM), an

open standard for representing information of the Power System, as the canonical data model for

communications with the ESB. The “off-the-shelf” software building blocks of the design and

standardized communications mechanisms are documented in the rationale of the design. UML

component and deployment diagrams were used to present the logical and physical

decomposition of the system, whilst activity and sequence diagrams where used to present its

dynamic behavior. Our design approach presented herein includes the detailed analysis of the

1 Access restricted to consortium members

8

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

above components, the documentation of external interfaces, the presentation of data structures

of information to be transformed to the CIM and the description of the UI to be provided to the

operator of the system.

The Data Analytics Platform (DAP) has the role of enabling the transparent integration of

heterogeneous data technologies and vendor subsystems, as well as various data types and acts

as a centralized storage of data for the project. Furthermore, it provides analytics computations

and visualization of data as a service. Its design was guided by scalability, performance,

availability and reliability constraints - given its role - and data security, privacy and integrity –

given the nature of the data stored. The design maps to the requirements of the Data

Management, Analysis and Visualization tools identified in report D1.3. Our design approach

presented herein includes also the presentation of the external interfaces and the data structures

managed by DAP.

The AAA Server is the security infrastructure offering Authentication, Authorization and

Accounting and enabling the control of user access to network resources, as well as tracking of

relevant activities. The AAA server is encapsulated behind a mediator (in our case the ESB) and

provides services for authenticating and authorizing service requestors (clients) for accessing

resources (services), in the context of a role-based access mapping (permissions) of services.

The design rationale is to mitigate the problem of security from the service provider to the AAA

Server and facilitate integration of security mechanism among the different services existing in

the project. In this document, we also present of UI mock-ups for the administrator of the system.

Finally, in this document we present the Operation Applications, i.e. web-applications that enable

the end-users to use the advanced functions related to grid monitoring and control developed in

the project. The main features of the user interface are presented with mock-ups, indicating the

depicted information and the expected behaviour of the application.

9

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

1. Introduction

1.1. RESOLVD Project

The objective RESOLVD project is to improve the efficiency and the hosting capacity of

distribution networks, in a context of highly distributed renewable generation by introducing

flexibility and control in the low voltage grid.

An innovative advanced power electronics device, with integrated storage management

capabilities, will provide both switching and energy balancing capacities to operate the grid

optimally. Continuous power flow control between storage and the grid, and also between phases,

will result in a flatter and reduced demand curve at the substation level with an associated loss

reduction and an improved voltage control and quality of supply.

The enhanced observability of RESOLVD, provided through cost-effective PMUs and state-of-

the-art short-term forecasting algorithms that predict demand and renewable generation, will

permit a reduction of uncertainty in grid operation and an increased efficiency. RESOLVD

proposes hardware and software technologies to improve low voltage grid monitoring with wide

area monitoring capabilities and automatic fault detection and isolation.

This improved observability and monitoring system combined with the capability of actuating on

the grid will benefit from robust scheduling methods to support self-healing and grid

reconfiguration, hence allowing efficient grid operation and a maximised renewable hosting

capacity.

1.2. Objectives and Methodology

The objective of this report is to present the detailed design of the software platform to be used

by the DSOs (namely the RESOLVD platform), presenting its architectural elements and the

detailed design of their components. It addresses mostly technical staff (e.g. software architects,

software developers) who are interested in understanding the design of the individual subsystems

and their interoperation and will serve as a guideline during the implementation phase.

The design analysis presented herein will be realized in the context of the tasks T4.1 “Enterprise

Service Bus” and T4.2 “Data Analytics Platform” and is highly related to previous work of the

project. More specifically with D1.1 “Use cases definition”, which provides the definition of the

Use Cases (UCs) of the project and the business and technical actors, as well as with D1.2

“Functional and operational requirements” [1], which provides the list of components to be

developed or integrated in the project and their functional and non-functional requirements. It also

relates to D1.3 “Interoperability and Integration Analysis and Requirements” [2], which presents

the integration aspects of the project and its conceptual architecture and finally to D1.4

“Information Security requirements”, which tackles the issues related information security.

The adopted methodology involved initially the modelling of the high-level design of each system

using the constraints identified as guidelines. This high-level decomposition was followed by a

more detailed design of the individual sub-systems. Unified Modelling Language notation [3], was

utilized where possible, for describing static and/or dynamic behaviour and internal logic during

the detailed design process. The design of external software interfaces and user interfaces, as

well as the design of the main data structures stored or exchanged is also presented.

1.3. Report structure

This section summarises the work presented in each of the chapters in the report:

10

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

 Chapter 1 provides an introduction to the project, the scope and objective of the report

and the methodology followed;

 Chapter 2 presents the high-level architecture of the RESOLVD platform, the assembly

of the different systems developed in the project, allowing integration with legacy systems

and external services, the execution of complex business processes and analytic

algorithms for advanced grid operations process, as well as for provision of visualization

services. The chapter also details the design issues that were faced and considerations

in general that influenced the design process;

 Chapter 3 focuses on the Enterprise Service Bus (ESB), the middleware responsible for

message transformation, content-based routing as well as other features that allow

seamless integration among enterprise applications. The chapter details the design of

the ESB, as well as the rationale of the design decisions;

 Chapter 4 presents the design and relevant considerations of the Data Analytics Platform

(DAP), the infrastructure that acts as a central data repository and is responsible for

providing computational analysis and visualization as external services;

 Chapter 5 discusses the AAA Server, the security infrastructure utilized in the project for

securing the platform from unauthorized access or malicious attempts.

 Chapter 6 presents the Operation Applications, the means of the operator (end-user)

interacting with the platform and details the design of user interfaces.

11

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

2. RESOLVD Platform

This chapter provides a high-level overview of the structural and functional decomposition of the

RESOLVD platform, presenting its structural elements, their roles and interrelations.

2.1. Overview

The RESOLVD platform is a software platform responsible for:

 Transparent integration with legacy systems (i.e. MDMS, SCADA, GIS), the Power

Electronic Devices (PEDs), supervision and analytics services as well as external

systems (i.e., Weather Forecaster, WAMS), through a common communication

infrastructure;

 Integration of heterogeneous data sources and data types (e.g. smart metering data,

weather station data, load consumption / generation forecasts), offering validation and

homogenization of data and guaranteeing accessibility with specific QoS characteristics;

 Hosting the operational applications, which manage the business flow of advanced grid

functions (DMS applications) and provide a user interface;

 Providing analytic computations as a service to other applications and presenting both

stored data and results of computations in a UI, embeddable in other applications.

2.2. Design Principles

This section presents a brief analysis of the most crucial factors and decisions leading to the

design that will be presented at the sub-sequent sections. An overview of the requirements and

constraints of the architectural elements of the platform is documented in D1.2 [1] and D1.3 [2].

The architectural design is based on the principles of Service Oriented Architecture (SOA). SOA

provides an approach for creating service-based architectures, where each service carries out a

small, well-defined set of functionality, reusable and independent. One can individually use these

(reusable) services or bind them in larger aggregated (specific) ones with a process called

orchestration. This approach provides a great amount of flexibility, reusability and loose coupling

of applications. In the case of the project, where several functions are provided as services (e.g.

supervision and analytics services), SOA provides a suitable approach.

Furthermore, the design uses the specification described in IEC 61968 “Application integration at

electric utilities - System interfaces for distribution management” [4] as a guideline for integration

of legacy systems of the DSO. The standard is intended to support the inter-application integration

of a utility enterprise that needs to connect disparate applications that are already built or new

(legacy or purchased applications) each supported by dissimilar runtime environments. IEC

61968, which is part of the Common Information Model (CIM) [5] standards series, supports

exchange of applications’ data on an event driven basis and implemented with middleware

services (Message Brokers, Message Oriented Middleware - MOM, Message- Queuing

Middleware, and Enterprise Service Buses-ESB). The design is based on the use of an ESB as

a middleware.

In the example presented in Figure 1, interface adapters are used as a means to integrate many

of the legacy systems with other application systems that are IEC 61968 (or CIM) compliant.

Information are published through middleware services (in the standard format) enabling multiple

“listeners” and better monitoring of the underlying processes. The CIM is an implementation

agnostic model, defining information used by electric utilities in UML as classes along with the

relationships between these classes. The exchange of information in CIM is implemented through

http://whatis.techtarget.com/definition/architecture

12

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

RDF (Resource Description Framework) models stored in a standard format, for example, XML

(eXtensible Markup Language). Some sample classes of CIM related to distribution grid are

presented in Figure 2.

Figure 1 IEC 61968 deployment example [4]

Figure 2 Sample Common Information Model classes [6]

Besides the integration aspect of integrating other systems or applications, the realization of the

advanced functionalities that will be developed in the project requires access to a variety of data

types and sources (from legacy or external systems). In order to mitigate problems related to data

accessibility from individual systems and reduce the communication traffic to production

infrastructure – since legacy systems are in operational state- the design employs a central data

storage infrastructure. This infrastructure will be responsible for storing and providing access to

13

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

various project-related data - acting as an enterprise data “hub”- and facilitates their correlation

as well as the meta-analysis of operation actions.

Finally, for facilitating the integration of security mechanisms in the network of the different

services developed or integrated, a centralized authentication, authorization and accounting

authority will we developed.

2.3. High Level Architecture

Figure 3 presents the architectural elements of RESOLVD platform and their interconnections,

briefly explained below and presented in more detail in Table 1 and in the next chapters.

Figure 3 RESOLVD Platform

The RESOLVD platform is composed of the following architectural elements:

 The Enterprise Service Bus (ESB), acting as an integration middleware;

 The Data Analytics Platform (DAP), acting as a central data repository and data analysis

and visualization provider;

 The AAA Server, serving as the security infrastructure;

 The Operation Applications, managing advanced grid operations and providing a UI.

Table 1 RESOLVD Platform Components

Component Name Description

Enterprise Service Bus

The Enterprise Service Bus (ESB) is the means to connect
service consumers with service providers, enabling them to
route service calls, transform messages, mediate between
communication protocols and data models and orchestrate

14

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

complex business processes. In the context of the project, the
ESB will be used for interfacing and interaction among the
various legacy system as well as applications and services
that will be implemented in the project, through standard
interfaces.

The ESB will be responsible for the orchestration of the
execution of the various modules, as well as the coordination
of data exchanges with different systems (GIS, MDMS, DAP,
WAMS etc.).

Data Analytics Platform

The DAP consists of the infrastructure that is responsible for
data management, analysis and visualization.

On one hand, it will integrate and homogenize data from third
party applications and services via appropriate interfaces,
which may differ among different data providers. It will act as
a centralized storage of data from legacy systems and results
of computation algorithms, allowing the decoupling of the
legacy systems from the operation of the advanced
functionalities offered by the operation applications.

DAP will also be able to host the calculations of key
performance indicators e.g. regarding the impact of the grid
operations, being able to provide them as a service.

Finally, DAP will provide visualizations, enabling end users to
view both raw data stored on DAP as well as the insights
gained from analytic computations.

AAA Server

The AAA Server will be utilized for the integration of security
mechanisms in a network of services. This security
infrastructure will provide authentication, authorization, and
accounting and will safeguard the platform’s
resources/services.

Operation Applications

The Operation Applications aim to provide an intuitive user
interface for the DSO, for performing advanced grid
operations. The user (grid operator) will be able to manage
different business processes related to the advanced grid
operation, as well as visualize the results of each step e.g.
problems detected, proposed solutions, impact of preventive
actions performed.

The platform interacts with external systems, integrated through the ESB:

 Supervision and Analytics services, that support Operation Applications, providing

advanced functionalities as a service;

 Supervisory Control and Data Acquisition system (SCADA) for accessing grid monitoring

and configuration information as well as accessing control operations;

 Meter Data Management System (MDMS) for accessing data from smart meter devices;

 Geographic Information System (GIS) for accessing grid topology;

 Power Electronics Device (PED); this device performs the grid control actions and

delivers data from its connection point, which is integrated through the SCADA;

 Wide Area Monitoring System (WAMS), for accessing information of PMU and PQM

devices and the results of fault detection algorithms;

 Weather Service, for accessing weather related information (history and forecasts).

15

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

3. The Enterprise Service Bus

In chapter, the design of the ESB is presented. The chapter is organized as follows:

 Initially, an overview of the ESB is presented based on the requirements and constraints

documented in previous work of the project (D1.2 [1] and D1.3 [2]). Towards this, a high-

level view of the ESB is also presented;

 The rationale of design is presented, documenting technologies, architectural patterns

and standards that were followed in the design process, as well as the “off-the-shelf”

hardware and software building blocks;

 An architectural description of the ESB is presented, detailing its internal components

and providing different architectural views;

 Finally, the detailed design of the internal components of ESB is documented, presenting

their roles, interfaces, internal logic and data models.

3.1. Overview

The ESB is a middleware that provides message transformation and content-based routing

capabilities as well as other features that allow seamless integration among enterprise

applications. Important benefits are the loose coupling of applications, the fact that it comprises a

single point of communication, the need for minimal integration coding, its scalability, the support

of standard interfaces and protocols, as well as the advanced monitoring capabilities. In contrary

to more traditional Enterprise Application Integration (EAI) approaches of monolithic stacks (such

as hub and spoke architecture), the ESB -based on the bus concept found in hardware

architecture- enables a distributed deployment.

The ESB supports intelligent routing, data transformation, synchronous and asynchronous

communications, complex event processing, service orchestration and business process

automation, among others. Deliverable D1.2 [1], presents in detail the requirements related to the

ESB. In accordance with these requirements, a top view of the system is presented in Figure 4

below as a UML component diagram. Table 2 presents a brief explanation of the interactions

indicated in this figure.

The ESB design is constrained by the following:

 Communication Security: Several of the legacy systems to be integrated by the ESB are

deployed in the control center or in the field, inside a Virtual Private Network (VPN) of the

DSO. In order to achieve a higher level of security in communications and facilitate

accounting, an adapter shall be installed inside the VPN. The adapter handles

connections from and to the private network of the DSO, as a single point of interaction,

provides the necessary data transformation for interactions with the legacy systems of

the DSO as well functionalities related to service registration, enabling easier integration.

 SG Standards compliance: The ESB will follow the IEC 61968 specification (part of CIM)

for data exchanges with the legacy systems of the DSO. The design is constrained by

the relevant constraints of the specification;

 Performance: The services integrated through the ESB have different performance

requirements, since some concern data exchanges, whilst other complex business flows.

The aim of the design it to be able to comply with these requirement through a scalable

infrastructure.

 Data Privacy: Sensitive data (regarding grid operation) will be transmitted through, thus

data confidentiality must be ensured.

16

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 4 ESB high-level overview

Table 2 ESB Interfaces

Type Interface Name Description

R
e
q
u

ir
e
d

MmdsDataAccess
Through this interface, the ESB has access to MDMS
data, including generation and consumption
measurements reported by smart meters.

GisDataAccess
This interface provides access to grid topology data from
the GIS.

WeatherDataAccess
Through this interface, weather forecasts and historical
weather data are provided.

ScadaDataAccess
Provides access to the ESB for data stored in the
SCADA (i.e. grid configuration, PED status).

ScadaOperationExec Provides access to operations exposed by the SCADA

WamsDataAccess
Provides access to the ESB for data stored in the WAMS,
regarding PMU/PQM devices measurements.

DataGlobalAccess
This interface of DAP, enables the ESB to perform data
access, manipulation and storage operations to the
central data repository.

AnalyticsExec
This interface provides the ESB with the ability to trigger
the execution of analytics services provided by DAP.

AnalyticsServiceAccess
This interface provides the ability to access and integrate
the services related to analytics and supervision.

P
ro

v
id

e
d

ServicesAccess
Interface for exposing individual or aggregated services
integrated through the ESB.

Data Access Exposes the data-messaging interface (CIM).

AdminService
This interface provides a management operations for the
administrator of the ESB.

cmp Components

ESB ServicesAccess

AdminAccess

DataAccess

GIS

GisDataAccess

SCADA

ScadaDataAccess

ScadaOperationExec
WAMS

WamsDataAccess

MDMS

MdmsDataAccess

DAP

DataGlobalAccess

AnalyticsExec

Weather
Service

WeatherDataAccess

Operation
Applications

Supervision and analytics
services

AnalyticsServicesAccess

WebInterface

17

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

3.2. Design Principles

The ESB acts as a standards-based distributed integration platform, combining various types of

messaging paradigms, transformation, routing and web services. The initial intention is to support

REST (REpresentational State Transfer) as well as implementation of the Remote Procedure Call

(RPC) i.e. Simple Object Access Protocol (SOAP).

REST is an architectural style that defines a set of constraints to be used for creating web services

commonly used in the development of Web services. Web Services that conform to the REST

architectural style, (RESTful web services) allow the requestor to access and manipulate textual

representations of web resources by using a uniform and predefined set of stateless operations.

This allows a decoupled architecture and lightweight communications between communicating

parties.

SOAP is a messaging protocol specification allowing different systems to communicate, typically

using Hypertext Transfer Protocol (HTTP) and the Extensible Markup Language (XML).

Commonly regarded as the protocol of the choice for inter-application and business-to-business

communications, many ESBs in the past were based on combination of SOAP/XML for

information exchange.

Aiming to achieve interoperability both with legacy systems as well as the future services

implementation, both technologies shall be supported. Toward this scope, functionalities of legacy

applications will be “wrapped” as services if necessary. As already mentioned, the ESB will follow

the specification described in IEC 61968. Each flow related to data exchange from/to the ESB

with the legacy systems shall be in a CIM compliant data format. In the occasion where the system

communicating with the ESB does not support the format, an adapter will be responsible for

translating it.

Figure 5 Scope of IEC 61968-100 [7]

Furthermore, “Part 100: Implementation profiles” [7] of the standard’s series, specifies an

implementation profile for the application of the other parts of IEC 61968 using common

integration technologies, including Java Message Service (JMS) and web services. This standard

also provides guidance with respect to the use of Enterprise Service Bus (ESB) technologies. As

presented in Figure 5, the integration layer, enables different technologies between receiver and

transmitter, as well as provides support for one-to-many information exchanges

(publish/subscribe integration patterns) and key functionality such as delivery guarantees.

Java Message Service is an API for message-oriented middleware concerning message

http://searchsoa.techtarget.com/definition/Web-Services-Glossary
http://whatis.techtarget.com/definition/decoupled-architecture
http://searchwindevelopment.techtarget.com/definition/HTTP
http://searchsoa.techtarget.com/definition/XML

18

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

exchange between two or more clients. JMS supports request/reply, publish/subscribe and point

to point messaging patterns. This messaging standard allows application components based on

Java to create, send, receive, and read messages, allowing loosely coupled, reliable and secure

communication. JMS is typically used within a secure, private enterprise network. In cases where

this is not true, JMS can be configured to use SSL/TLS and/or use client authentication.

Another important decision related to the ESB design concerns the definition of how much of a

transaction is orchestrated by the middleware, and what is required from the participating systems

(or services). If an endpoint system handles the orchestration, the middleware’s role is limited to

that of a message broker.

Following the SOA pattern described above, the endpoint systems will be considered offering the

minimal set of functionalities as services, whilst the ESB will handle integration in two different

tiers: one concerns the mediation of messages towards integration of different services and the

other concerns the orchestration of multiples services as a single aggregated service, following a

business process flow.

In terms of using “off-the-shelf” building blocks of the ESB, our approach is that, instead of a full-

blow open source solution such as Apache ServiceMix or MuleESB, a lightweight approach will

be followed, with the utilization of Apache Camel [8] and add-on components.

More specifically the ESB will be composed of:

 Apache Camel, at the core of the ESB, as a message-oriented middleware, acting as a

routing and mediation engine. Apache Camel is an open source framework for message-

oriented middleware with a rule-based routing and mediation engine that provides a Java

object-based implementation of the Enterprise Integration Patterns using an application

programming interface to configure routing and mediation rules. The available

documentation [9] on the most common enterprise integration patterns, as well as support

of open-source frameworks facilitates their use for designing integration solutions.

Apache Camel will be the main building block of the ESB solution designed. In Figure 6,

the architecture of Apache Camel is presented. Camel utilizes different endpoints to send

and receive messages with camel components, which act as the connectors with all other

systems. The variety of components supported by Camel makes it interoperable with

different type of technologies (DBs, transport protocols, data format etc.). At its core,

Camel processors connect the different endpoints, providing message routing,

manipulation (transformation, enrichment etc.) and monitoring abilities. Apache Camel

uses URIs so that it can easily work directly with any kind of transport or messaging model

such as HTTP, ActiveMQ, JMS etc. Adapters can be used for different kinds of

communication, supporting a variety of protocols and data formats. It also employs a

domain specific language (DSL) for the definition of complex routing rules and business

processes, while being agnostic on the data that is processed.

 Apache ActiveMQ [10] as a message broker, acting as a transfer agent. ActiveMQ is an

open source message broker written in Java together with a full Java Message Service

(JMS) client. As a messaging component, it can provide the ability to communicate

asynchronously with a range of other software and it is easily integrated with Apache

Camel (through the dedicated component), towards acting an interface for message

exchanges. ActiveMQ implements the Advanced Message Queueing Protocol (AMQP),

an open standard application layer that allows messaging. AMQP is identical to the use

of JMS, using queues in cases where the clients use the JMS API, making its use

transparent from the perspective of the client-side.

 jBPM [11] as a business process engine, for business process management and

19

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

execution. jBPM (Java Business Process Model) is an open-source workflow engine,

developed by Red Hat Software, that can execute business processes described in

Business Process Model and Notation (BPMN) 2.0 [12], able to be integrated with Apache

Camel. This component supports the definition processes that drives the business

processes (orchestrations), providing a flexible and easy to use tool for the creation and

management of such processes.

Figure 6 Architecture of Apache Camel [8]

The system will be deployed in a server with either Linux or Microsoft Windows Operating

Systems. Both relational (MySQL) and non-relational (NoSQL) data databases shall be

supported, with the use of appropriate connectors/adapters.

3.3. Architecture

3.3.1. Logical View
Figure 7 illustrates the internal components of the ESB, which are briefly explained in Table 3 and

further analysed in the following sections.

20

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 7 ESB Component diagram

Table 3 ESB’s main components

Component Name Description

Middleware

This exposes the interfaces for integrating data exchanges and
composite functions. It provides the following core functionalities:

 Transport protocol conversion;

 Message transformation;

 Message routing;

 Message enhancement.

Business Process Engine
(BPE)

Provides service choreography implementing the business flow
part of Operation Applications (see chapter 0).

ExtAdapter

Handles communications related to data access, with the legacy
systems of the DSO and external systems in general; Implements
a messaging client so that these systems can connect to the
Middleware’s messaging interface.

Data Access Manager Provides an interface for accessing and manipulating data.

Service Manager Local
Responsible for keeping the service registry and for integrating
external services.

Service Manager Remote
Responsible for keeping the service registry at the remote location
and integrating external services.

System Manager
Manages operations related to the configuration, monitoring and
administration of the system.

Security Access Manager Handles security integration with AAA server.

3.3.2. Process View
The ESB mediates messages through provision of communication endpoints, routes information

and supports multiple transport protocols and transformation abilities. In Figure 8, the activity

diagram of the message handling process is presented. In the initial step, the message is received

and is directed to the message router. A routing service will forward to the right output destination

of the message, whilst a translation processor will undertake the task of converting among the

different data models and data formats supported by the sender/receiver of the message, and in

many occasions to standardized data formats.

cmp ESB Components

ESB Core

ESB Adapter

Business Process
Engine

SecurityAccessSecurity Access
Manager

SecurityAccess

DataGlobalAccess

Data Access Manager

DataGlobalAccess

ExtAdapter

ExtDataAccess
ExtServicesExec

Service Manager
Remote

Admin

ExtServicesExec

System Manager

AdminAccess

ServicesExec
Service Manager

Local

ServicesExec
Middleware

DataAccess

ServicesAccessServicesAccess

21

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 8 Message flow activity diagram (a) and process diagram (b)

Moreover, the ESB has the role of the orchestrator of business processes, handling the routing

of a message through a set of services to produce the desired result. Orchestrating of such

operations means that when a client of a service (e.g. the operator of an application or an internal

time-trigger of an application) triggers the business process, the ESB is responsible for delivering

the end-result. The ESB must invoke the right services and provide the result to the original

requestor. Figure 9 presents the sequence diagram of the main flow of an application

orchestration process.

Figure 9 Sequence diagram of orchestration

sd Orchestration Flow

ESB EFSCADA PFS CEF GOSDAP

Grid Configuration, PED Status()

Grid schedule()

Optimal Schedule Request(Generation and Demand Forecast, PED Status, Grid Configuration)

[If application is CEPA]:Forecast Request(Power flow simulations, grid configuration, consumption and generation data (voltage))

Consumption & Generation Forecast()

Forecast Request(Weather forecast, Grid configuration, Consumption and Generation data)

SM Measurements()

Grid data request()

Grid schedule()

SM data request(Weather forecast)

Critical events()

Power flow simulations()

Power Flow Simulation Request(Grid configuration, Consumption and Generation data(energy))

Weather forecast()

Weather forecast request()

22

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

In Figure 10, an execution flow of the BPE is instantiated (using BPMN notation), depicting how

the external requestor triggers a process, how the ESB picks up the message and starts the BPM

process and finally how the flow is executed through a series of actions (service invocation etc.)

and the result is returned to the original requestor.

Figure 10 Business process engine execution flow

3.3.3. Physical View
Figure 11 shows the ESB decomposition in terms of distributed subsystems with a possible

instantiation for the scope of the project. The subsystems are the following:

 ESB Adapter: Responsible for transporting and optionally translating the message, as

well as for managing service intergration at remote locations such as keeping the services

registry and integrating external services. Security measures for this component will be

established on both network (e.g. restricted access) and application level (e.g. certificate).

 ESB Core: Providing the core functions of the middleware related to message mediation,

business process management and service integration, as well as security management

(through an external AAA server) and system monitoring.

Business Process Business Process View

B
u

si
n

e
ss

 P
ro

ce
ss

 E
n

g
in

e
M

O
M

S
e

rv
ic

e
 R

e
qu

e
st

o
r

Request Service1

Request Service2

Request ServiceN

Service Requests

Trigger Event

Incoming

Message

Filter Message Invoke business

service
Result

Received

Result

Received

ResultService

Request

Invoke Service

«flow»

«flow»

«flow»

«flow»

23

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 11 ESB Deployment diagram

3.4. Components Design

This section provides the low-level design for each of the components of the ESB identified in the
previous section.

3.4.1. Middleware

deployment Artifacts

«device»

Local Machine(s)

«device»

Remote Machine at Contol Center

«executionEnvironment»

Application Server

ESB Core

«executionEnvironment»

ESB Adapter

ExtAdapter Service Manager

Remote

Data Access

Manager

Middleware

Security Access

Manager

Service Manager

Local

System Manager

«executionEnvironment»

Application Server (JBOSS)

Business Process

Engine

24

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

3.4.1.1. Description
A Message Oriented Middleware (MOM) consists of the infrastructure that supports the exchange

of messages between the different sub-systems of the ESB, as well as external, enabling their

seamless integration. When using a MOM, a service requestor calls the system to send a

message to a destination managed by the provider, which invokes provider services to route and

deliver the message. In the case of asynchronous communication, the client can continue its

work, until the response is retrieved. This enables loosely coupled components, which are easier

to maintain and eliminates any problems related to intermittent connectivity in the network. The

Middleware component acts as a MOM and provides persistent storage for backing up the

message queue.

The routing logic of the MOM can expand from content-based routers, where the content of a

message is inspected in order to define the routes, to dynamic-router where routing logic is

modified through control signals (see EAI patterns [9]). The message route could exist in

messaging layer itself or be provided by the service requestor.

The MOM can transform messages en-route to match the requirements of the sender or of the

recipient. In the context of RESOLVD, messages concerning the integration of data from external

systems will comply with the CIM - with the use of adapters where necessary.

3.4.1.2. Internal Logic
The component design is based on the following artefacts:

 camel-core – the basic module of apache camel.

 camel-jms / activemq-camel (or other mq library supporting JMS) as JMS component.

Table 4 presents the main modules of the component.

Table 4 Modules of Middleware component

Component Name Description

MOM
This module provides a rule-based routing and mediation engine
offering the core functionalities of the Middleware.

Message Broker

A building block of the Middleware is the message transfer agent
(message broker). It acts as the connection of the Middleware
with the external world and provides a solid implementation of
messaging interface.

Adapter

This module is responsible for communicating with the back-end
and transforming data from a certain format to the canonical
format. The adapter can also handle an activity flow related to
security (e.g. authentication, decryption, verify or sign document)
and handle error cases.

3.4.1.3. Interfaces
Provided interfaces are presented in §3.6.

3.4.2. Business Process Engine

3.4.2.1. Description
An orchestration consists of a series of ordered operations or transactions that implement a

business process. The role of the business process engine is to be able to interpret business

process into a series of service calls using simple conditional logic and data aggregation

techniques, in order to complete a business flow.

25

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

3.4.2.2. Internal Logic
The design of BPE follows a modular approach, utilizing the following artefacts:

 jBPM libraries, as a business process engine;

 camel-jbpm (Camel add-on), providing integration with jBPM;

 custom modules, enabling interaction among them and with the Middleware.

In Figure 12 a structure of the BPE is illustrated, adapted from [13], depicting its main modules

and their interrelations.

Figure 12 Business process engine composite structure

The following table provides a brief description of the main modules of the BPE component.

Table 5 Modules of BPE component

Module Name Description

Core Engine
This module is responsible for handling the steps of the business
process. It is deployed as a service and can be integrated through Java
API or CDI services, as well remotely through a REST and JMS API.

Business Activity
Monitoring

Keeps track of the business processes and provides monitoring
information of the status of the business process.

Process Manager
Handles events (both internal and external), either by invoking business
processes in the Core Engine or by invoking services in the Middleware
and providing the result to the Core Engine.

Model Manager
Provides an interface for storing the process models in the model
repository.

Model Repository
Responsible for storing the models (in XML format) of business
processes and the history of business processes’ invocation.

3.4.2.3. Interfaces
The functions provided through the interface of the BPE, are presented in Table 6.

composite structure Business Process Engine

Business Process Engine

Model Manager

Core Engine

Business Activity

Monitoring

Process Manager

Model Repository

Middleware

startProcessCall

Result

Process

Result
Process

Model

Service

Call

26

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Table 6 Business Process Engine interface functions

Method Parameters Response Description

startProcess
Process id

(Parameters)
Process
Instance

Start a new process instance. Returns an object
representing the instance of the process that
was initiated.

abortProcess
Process

Instance ID
Success

Code

Aborts the process instance with the given id. If
the process instance has been completed or
aborted, or cannot be found, it returns an error.

signalEvent
Event Type
 (Process

Instance ID)
-

Signals the engine that an event has occurred.
The type parameter defines which type of
event and the event parameter can contain
additional information related to the event.

getProcess
Process

Instance ID
Process
Instance

Returns the process instance with the given id.

storeModel XML file Process Id
Stores a model of a process as XML file.
Returns the process id upon success, or an
error code.

3.4.3. ExtAdapter

3.4.3.1. Description
The ExtAdapter is a messaging client that handles communications with legacy systems of the

DSO and external systems in general, that do not support messaging or the canonical data model

format (CIM). It provides the ability of both push/pull mechanism in the communications with such

systems, whilst gathered information will be provided to the message queue (or relevant topic) of

a message communication thread. In the case of pull mechanism, the component will be able to

communicate with the Service Manager Remote component, in order to have access to the

location of the services. The pull mechanism could be triggered either periodically, through an

internal process, or by an external request of the Middleware.

3.4.3.2. Internal Logic
The following table provides a brief description of the main modules of the ExtAdapter component.

Table 7 Modules of ExtAdapter component

Module Name Description

Mediator
Responsible for providing a web interface for receiving data from
external systems (push), as well as invoking services for
accessing data (pull) upon trigger.

CimTransform
This module can transform data from external systems to CIM
format, using a predefined mapping of ontologies and attributes.

Messaging Client
Undertakes the role of the JMS client for exchanging messages
with the Middleware.

Scheduler
This module triggers the process of accessing data from external
systems (in pull mechanism).

Data Manager
Responsible for communicating with a local database and
storing the message queue.

3.4.3.3. Interfaces
The ExtAdapter will provide a web interface for exchanging data with external systems, as well

as a messaging interface (compliant with IEC 61968-100 standard) for communicating with the

27

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Middleware.

The integration between the ExtAdapter and non-compliant interfaces can be based on a variety

of integration mechanisms, which may include (but not limited to):

 Web services

 HTTP

 Java Database Connectivity (JDBC)

 File Transfer Protocol (FTP)

3.4.4. Data Access Manager

3.4.4.1. Description
Data Access Manager component is in charge of storing and retrieving data from an external data

repository (i.e. DAP), whilst all data provided for storage or retrieved comply with the predefined

data model. The component represents the service layer that manages data provided through:

 “Bulk” data interface (DataAccess) between legacy systems and external services;

 Services interface (ServiceAccess);

 Middleware related meta-data (logs, events etc.); and

 Data requested by external applications and services.

3.4.4.2. Internal Logic
The component design is based on the following Apache Camel add-ons:

 custom modules for accessing the short-term store through a web API;

 camel-jdbc, for accessing management databases (through JDBC);

 camel-hdfs2, providing the functionalities for reading and writing messages from/to the

bulk-store (HDFS file systems).

The main modules of the component are presented in Table 8, below.

Table 8 Modules of Data Access Manager component

Module Name Description

Message Database
Connector

Manages connections to the short-term store, which keeps all
the messages currently processed by the middleware.
Messages contain both data and context information (related to
routing).

Management Database
Connector

Manages connections to the data store for meta-information.

 Bulk-Storage Connector
Manages connections to the database that keeps records of all
events taking place and acts as the long-term storage for all
messages.

3.4.4.3. Interfaces
The Data Access Manager will support interface for data manipulation both for relational (SQL

queries) as well as for non-relational database (NoSQL queries), through proper connectors.

3.4.5. Service Manager

3.4.5.1. Description
The Service Manager component keeps the registry of services. Information such as Service UID,

description, URL, class (group), version, call method, exceptions, security (e.g. authorisation),

permissions (i.e. roles of AAA server - §5) are managed by this component. The component is

28

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

also responsible for integrating external applications, by invoking external services.

The Service Manager Remote component has the same functionality with the Service Manager

Local Component. Their differentiation concerns the deployment location.

3.4.5.2. Interfaces
The Service Manager interface provides the methods presented in Table 9.

Table 9 Services Manager Local interface

Method Parameters Response Description

addService
Service

Description
Service ID

Add a new service in the registry providing
any relevant parameters.

updateService
Service ID

Service
Description

Success
Code

Updates an existing service.

deleteService Service ID
Success

Code
Deletes a service from the registry.

getServices -
List of

Service
objects

Returns the list of services.

invokeService
Service ID

Call Parameters
(Session Ticket)

String
Invokes a service from the one registered
in the registry.

3.4.6. Security Access Manager

3.4.6.1. Description
This component handles the integration of the ESB and the AAA server, providing an interface

for authentication, authorization and service registry synchronization.

3.4.6.2. Interfaces
Table 10 presents the Security Access Manager interface’s methods.

Table 10 Security Access Manager interface

Method Parameters Response Description

authenticate
Username
Password

Session ticket
Exposes the method of authentication
via the AAA server.

authorize
Session ticket,

Service ID
Success

Code

Exposes the method of authorization
via the AAA server. Returns an error
code if the authorization fails.

synchronize

List of
<Service Id,

Group Id,
Role Id>

Success
Code

Provides a batch synchronization of the
service registry between AAA server
and Service Manager.

3.4.7. System Manager

3.4.7.1. Description
The System Manager component is responsible for managing operations related to the

configuration, monitoring and administration of the system. The component will provide a UI for

performing the relevant operations (see §3.5).

29

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

3.4.7.2. Internal Logic
The component design is based on the following Apache Camel add-ons:

 camel-core, providing the Control Bus enterprise integration pattern for logging and

monitoring the operation of the ESB;

 jBPM libraries for monitoring of the business process;

 custom modules for integration and UI functionalities.

3.4.7.3. Interfaces
Provided interfaces are presented in §3.6.

3.5. Graphical User Interface Design

The ESB will provide a user interface environment for managing and parameterising its

functionalities and monitoring its operation. The main aspects of the design approach for the user

interface of the ESB are as follows:

 Login page: The user will use a login page for being authenticated, defending any

unauthorized access to the system. By inserting the username and the password and

successfully logging in, one the user will have to access the overall system functionalities

based on the roles assigned to the user account2.

 Managing Services: The services’ management administrator will have the ability to

define service, by giving all the necessary information (name, description, version, URL

etc.). The service definition will be stored in the services repository. The user will be

prompted to select the class (group) of service described and edit the permissions for

accessing the service. The service by default will have the permission inherited by its

class (group). The user will also have the ability to manage the routing rules through this

interface.

 Business Process Monitoring: Any business process has a predefined set of steps in

order to be completed. The user will have the ability to monitor the status of the operation

and the session variables as well. In case the process is in waiting mode, requiring user

input, the administrator will be able to update the variables in order to move to the next

step of the process. The administrator will also have the ability to see the list of current

or past processes, providing information on their status (pending, completed, active,

aborted or suspended), execution time, duration and relevant key performance indicators.

Finally, the administrator will have the ability to pause or stop the execution of a process.

 Managing Business Process Models: The administrator will have the ability to create,

update or delete a business process. All created business process model, will be stored

in the model repository and can be instantiated using its unique identifier.

 Managing Communications: A web based administration tool will enable the

parameterization and monitoring of the message broker.

3.6. External Interfaces Design

The following external interfaces will be provided by the ESB:

 Data Access: Supports messaging communications (IEC 61968-100 standard);

 Services Access: Exposes the services (i.e. orchestration services) as a web service;

 Admin: Exposes the management of services and business processes as a web service.

2 Additional measures like two-factor authentication will be specified in deliverable D4.5.

30

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

There are several integration patterns described in IEC 61968-100 [7] for implementing
communications. The most basic ones, concern:

 Synchronous request/reply, through web services or JMS queues;

 Asynchronous request/reply, through web services (using callback) or JMS queues;

 Publish/subscribe, through web services (using callback) or JMS topics3.

Services Access and Admin interfaces’ provided methods are explained in Table 11 and Table
12.

Table 11 Services Access interface

Method Parameters Response Description

invokeService
Service ID

Call Parameter
(Session Ticket)

Service
Response

Calls a service with the
provided parameter and
returns the response.

getServiceInfo
Service ID

(Session Ticket)
Service

Description
Provides the description
of a service.

getServiceStatus
Service ID

(Session Ticket)
Service Status

Provides the status of a
service.

Table 12 Admin interface

Method Parameters Response Description

registerService
Service

Description

(Session Ticket)
Service ID

Add a new service in the
registry providing any
relevant parameters.

updateService

Service ID
Service

Description
(Session Ticket)

Success
Code

Updates the details of an
existing service in the
registry.

deleteService
Service ID

(Session Ticket)
Success

Code
Deletes a service from the
registry.

getServiceList (Session Ticket)
List of

Service
objects

Returns the list of services.

addRoute
XML file

(Session Ticket)
Success

Code

Creates a specific routing
design from/to an
endpoint(s) and returns the
route id or an error code.

deleteRoute
XML file

 (Session Ticket)
Success

Code
Deletes a specific route.

startRoute
route ID

(Session Ticket)
Success

Code
Initiates a specific route.

stopRoute
route ID

(Session Ticket)
Success

Code
Stops a specific route.

getRouteStatus
route ID

(Session Ticket)
Route Status

Provides the status of a
specific route.

addBusinessProcess XML file
Business

Process ID
Save a business process in
the repository.

deleteBusinessProcess
Business Process

ID
Success

Code
Deletes a business process
from the repository.

3 Topics are used when the destination of a message is potentially more than one process, whilst Queues
are used when the destination of a message is at most one process.

31

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

getBusinessProcessList -
List Business

Process
Descriptions

Returns the list of the
business processes.

getBusinessProcessStatus
Business Process

ID

Business
Process
Status

Return the status of the
business process e.g.
execution state, current step
of workflow, execution start
time, duration.

3.7. Data design

3.7.1. Canonical Data Model
Data provided through the DataAccess interface must be compliant with the information model

IEC61968 (referred here as CIM). Adapters which convey with the messaging standard defined

in IEC 61968-100, are responsible for transforming the data to proper data format if necessary,

whilst the actual message is transferred inside the payload of the message. Figure 13 presents

the top structure (message envelope) of CIM messages, which is further explained below.

Figure 13 IEC61968 Message Structure [14]

 Header holds meta-data about the message:

o Noun: Identifies the CIM profile being exchanged. Verb: Identifies the action to
be taken (e.g. create, change, cancel).

o Message Id: Unique identifier of the message.

o Correlation Id: Unique identifier used to map related messages.

o Reply Address: Address to specify URL for asynchronous replies.

o Revision: Version of standard (IEC61968) used.

 Request is used to convey request parameters for request messages e.g. Start and End

Time of interest (time-based query), type of request, among other.

 Reply captures result/error state for response messages.

 Payload holds the CIM information object being exchanged. It will correspond to the CIM

profile identified in the header.

32

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

3.7.2. External Data
A description of data structures integrated through the ESB is presented in this section, detailing

the source and format of the data, as well as a small description. For business process

information, the metadata field provides a relation of the data with the information provided in the

original request.

Table 13 presents the structure of the data provided by the MDMS, which concern smart meter

measurements. The mapping to the CIM format can be done using the MeterReadings schema

defined by IEC 61968-9.

Table 13 Smart meter data

Source description

Metered electricity consumption by commercial and industrial customers. Provided by the
MDMS.

Data format

CSV or XLSX file with header row, containing the following information:

 Meter identifier

 Secondary Substation name

 Time of reading as yyyy-MM-dd. HH:mm:ss

 Type of measurement (e.g.Hourly)

 Season as summer (E) or winter (H)

 Imported active energy (accumulative) in Wh

 Exported active energy (accumulative) in Wh

 Reactive energy of quadrant 1 (Imported inductive energy) in +Var_i

 Reactive energy of quadrant 2 (Exported capacitive energy) in -Var_c

 Reactive energy of quadrant 3 (Exported inductive energy) in -Var_i

 Reactive energy of quadrant 4 (imported capacitive energy) in +Var_c

 Voltage of phase 1 in V

 Voltage of phase 2 in V

 Voltage of phase 3 in V

 Voltage of phase N in V

Table 14 and Table 15 present the data provided by the GIS. These concern secondary substation

data, including information of transformers, lines and supply points (customer connection points),

as well as switchgear data. The CIM classes needed to model will be based on

SecondarySubstation, PowerTransformer, Line, ACLineSegment, Switch, Location,

ConnectivityNode.

Table 14 GIS Secondary Substation data

Source description

Information of transformer element in the grid as well as its interconnection with lines (and
line segment), supply points and meters. Provided by the GIS.

Data format

XLSX file with header row, with multiple sheets, containing the following information.

Sheet with output of transformer, containing:

 Exit no. of transformer

 Unique ID of node

33

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

 Line voltage in V

Sheet with line segments connected to the transformer, containing:

 Exit no. of transformer

 Unique Id of line segment

 Line voltage in V

 Size in m2

 Material Type (Cu or Al)

 Deployment Type (aerial or ground)

 Length in meters

 Starting node ID

 Ending node ID

 Coordinates of starting point

 Coordinates of end point

Sheet with supply points connected to the transformer, containing:

 Exit no. of transformer

 Unique ID of node

 Unique ID of supply point

 Unique ID of meter

 Contracted power of meter

 Line voltage in V

 Type of meter (three-phase or single phase)

Table 15 GIS Switchgear data

Source description

Information of switchgear element in the grid. Provided by the GIS.

Data format

XLSX file with header row, containing the following information.

 Unique ID of node

 Name

 Network

 Substation

 Voltage level

 Type of element (switchgear, disconnector etc.)

Table 16 and Table 17 present the data provided by the SCADA. The former describes the

information of the status of switchgears (grid configuration), whilst the latter describes the

information of the status of PEDs. The CIM classes needed to model will be based on

SecondarySubstation, PowerTransformer, Line, ACLineSegment, Switch, Location,

ConnectivityNode, as well as custom attributes and classes for the modelling of PED attributes.

Table 16 SCADA configuration Data

Source description

Information of grid configuration (i.e. switchgear’s statuses). Provided by the SCADA.

34

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Data format

CSV file with header row containing the following information:

 Identifier of the element

 Description of the element

 Name

 Network

 Substation

 Voltage level

 Type of element (switchgear, disconnector etc.)

 State (undetermined, open, closed, or unknown)

Table 17 PED Status data

Source description

Information of PED statuses in the grid. Provided by the SCADA.

Data format

Text file containing the following information:

 Identifier of element

 Time as yyyy-MM-dd. HH:mm:ss

 Voltage Ph1 (V)

 Voltage Ph2 (V)

 Voltage Ph3 (V)

 Voltage PhN (V)

 Current Ph1 (A)

 Current Ph2 (A)

 Current Ph3 (A)

 Current PhN (A)

 Power Ph1 (KW)

 Power Ph2 (KW)

 Power Ph3 (KW)

 State of charge of battery (kWh)

 State of charge of battery (%)

 Alarm code

 Reactive compensation signal (true/false)

 Harmonic current mitigation signal (true/false)

 Currents balancing signal (true/false)

Table 18 up to Table 22 provide a description of the data provided by the integrated services of

EF, PFS, CEF, GOS and FDA.

Table 18 Consumption and Generation forecast data

Source description

Consumption and Generation forecast data provided by the Energy Forecaster (EF). Details
the quantity of energy imported/exported at specific time in different buses of the distribution
grid.

35

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Metadata

 Forecast request

 Weather forecast data

Data format

Text file containing the following information:

 Bus ID

 Time as yyyy-MM-dd. HH:mm:ss

 Forecast quantity (+/- sign defines the direction of the energy flow)

 Upper bound

 Lower bound

 Confidence level (of the calculated upper and lower bounds)

 Energy unit (by default Wh)

Table 19 Power Flow Simulation data

Source description

Power flow simulation data provided by the Power Flow Simulator (PFS).

Metadata

 Simulation request.

 Consumption and generation data forecast used.

 SCADA configuration used.

 Voltage data used.

Data format

Text file containing the following information:

 Node ID

 Time

 Voltage Ph1 (V)

 Voltage Ph2 (V)

 Voltage Ph3 (V)

 Voltage PhN (V)

 Current Ph1 (A)

 Current Ph2 (A)

 Current Ph3 (A)

 Current PhN (A)

Notes

Time is in yyyy-MM-dd. HH:mm:ss format.

Table 20 Critical Event Forecast data

Source description

Critical event forecast data provided by the Critical Event Forecast (CEF). A list of events a
specified locations of the grid (bus or line).

Metadata

 Forecast request

36

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

 Consumption and generation data forecast used.

 SCADA configuration used.

 Voltage data used.

 Power flow simulation data used.

Data format

Text file containing the following information:

 The bus ID where critical event has been forecast

 Branch (line) ID where critical event has been forecast

 The Phase where the critical event has been forecast

 Calculation time of the forecast

 Critical event forecast time, when the critical event is expected to occur

 Critical event type, defining the type of critical event (congestion, over-voltage, under-

voltage)

 A values indicating the magnitude of the critical event

 Optionally the critical event magnitude unit. By default congestion unit is % over

thermal limit and voltage unit % over nominal voltage.

Notes

Date times are in as yyyy-MM-dd. HH:mm:ss format.

Table 21 Grid Operation Schedule data

Source description

Grid schedules provided by the Grid Operation Scheduler (GOS). Describes a list of actions of
each grid actuator: PED or switchgear.

Metadata

 Schedule Request

 Consumption and generation data forecast used.

 SCADA configuration used.

 Power flow simulation data used.

Data format

Text file containing the following information:
Switchgear Schedules:

 Switchgear ID

 Switching Schedule, as a 2xN array of switching actions, specifying:

 Date time of the action

 Action code(open/close a line)

PED Schedules:

 PED ID:

 Operation Schedule, as a 2xN array of import/export actions, specifying:

 Date time of the action

 The quantity of energy exported/imported (+/- sign defines the direction of the energy

flow)

 Energy unit (by default Wh)

Notes

Date times are in as yyyy-MM-dd. HH:mm:ss format.

37

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Table 22 Fault detection alert

Source description

Faults provided by the FDA application.

Metadata

 Schedule Request

 Consumption and generation data forecast used.

 SCADA configuration used.

 Power flow simulation data used.

Data format

 Fault type code, for describing fault type

 Fault location, as a list of Node IDs where the fault occurred (estimation)

 Fault locations, as a list of Line ID(s) where fault occurred (estimation)

 Pinpoint location as a distance of the fault from the node (inline distance in meters)

 Detection time of the fault

 Estimation of the fault start time

 Estimation of the fault end time (if occurred)

Notes

Date times are in as yyyy-MM-dd. HH:mm:ss format.

38

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

4. The Data Analytics Platform

This chapter presents the design of the DAP and is organized as follows:

 Initially, an overview of the DAP is presented based on the requirements and constraints

documented in previous work of the project (D1.2 [1] and D1.3 [2]). Towards this a high-

level view of the DAP is presented;

 The rationale of design is presented, documenting 3rd party software building blocks that

were utilized;

 An architectural description of the DAP is modelled, detailing its internal components and

providing different views for consideration.

 Finally, the detailed design of the components is documented, describing their role,

interfaces, internal logic and data design.

4.1. Overview

The Data Analytics Platform (DAP) is the solid instantiation of the Data Management, Analysis

and Visualization tools identified in D1.3. Its role is, on one hand, to allow the transparent

integration of heterogeneous data technologies & vendor subsystems, various data types (from

start metering data to models of distribution grid, load consumption / generation forecasts etc.),

offering validation and homogenization of data and guaranteeing accessibility with specific QoS

characteristics. DAP acts as a centralized storage of data from legacy systems and results of

computation algorithms, allowing the decoupling of the legacy systems from the operation of the

advanced functionalities that will be developed in the project. On the other hand, it is able to host

analytics computations, providing them as a service to other applications, as well as provide data

visualization (raw data or results of computations) as an embeddable artefact able to be integrated

in web applications.

The DAP’s design is constrained by the following facts:

 Scalability: The data held by the DAP is expected to increase beyond to those initially

foreseen, as new legacy systems are integrated and the understanding of ways to exploit

these data improves, leading to new applications being developed and executed by the

DAP. A flexibility on the amount of data and type of data stored in the DAP must be

established;

 Performance: The DAP will act as a central data repository, providing access to different

applications, with different performance requirements. The DAP must be able to meet

these requirements, avoiding any unnecessary delays, which can affect negatively the

normal execution of the business process. Furthermore, DAP acts also as an execution

platform for analytics applications and as a visualization provider. In a similar manner the

quality of service of these services must be ensured;

 Availability and Reliability: The DAP acts as a source of data for many applications,

hence, the downtime of both the DAP must be minimized. Furthermore, non-availability

of visualization or analytics services from the DAP, should also be avoided, otherwise the

Operation Applications, which integrated such services, will not be able to provide

monitoring functionalities to the end-user;

 Smart Grid Standards’ compliance: The communications related to data operations

with DAP will follow the CIM specification (IEC 61968), given that the ESB, which

mediates all relevant communication with DAP, will follow this specification;

 Data security, privacy and integrity: Some of the data held in DAP are of sensitive

39

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

nature (grid operation data) thus data confidentiality must be ensured. Furthermore, all

data requested from the DAP must be delivered to properly authenticated and authorized

recipients, over reliable and secure channels.

Figure 14 DAP high-level overview

A top-view of the DAP is presented as a UML component diagram in Figure 14, detailing its

interaction with external systems and applications. A brief explanation of the interfaces is

presented in Table 23.

Table 23 DAP Interfaces

Type Interface Name Description

R
e
q
u

ir
e
d

ServiceAccess
This interface exposes the services integrated through
the ESB; DAP will use this interface for polling external
data.

SecurityAccess
Interface to AAA server for integrating security
services.

P
ro

v
id

e
d

DataAccess
Interface for accessing and providing data from/to
DAP.

VisualisationAccess
Through this interface, access to visualisations is
provided.

AnalyticsExec
This interface provides the ability to trigger the
execution of analytics services provided by DAP.

AdminAccess
Through this interface, the administrator of the system
interacts with DAP in order to design the applications.

4.2. Design Principles

The data managed by the DAP have certain characteristics that could characterize them as “big

data” [15]. The 3Vs (volume, variety and velocity) are three defining properties or dimensions of

big data, with volume referring to the size of data, variety referring to the number of types of data

and velocity referring to the speed of data processing. On one hand we have a large volume of

data to be stored and a variety of types (e.g. CIM network models, grid measurements), acquired

from different systems (e.g. SCADA MDMS, GIS). On top of that, we have a data ingestion that

could be considered near real-time for some types of data (e.g. from SCADA). Furthermore, as

already mentioned, the creation of such a platform dictates flexibility and scalability both in

capacity as well as in processing power.

cmp ContextView

AAA Server

SecurityAccess

Operation
Applications

ESB

ServiceAccess

Admin

DAP

AdminAccess

VisualisationAccess

DataAccess

AnalyticsExec

40

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

CIM-based network models have generally been managed in relational databases (RDBMS) and

queried through complex Structured Query Language (SQL). Unfortunately, such data models

are difficult to naturally represent in relational structures creating a management overhead. The

object-class hierarchy of the network model is decomposed into numerous linked relational tables

and sophisticated queries must be developed using large numbers of table joins. The use of a

triple-store [16] or graph [17] database technology facilitates [18] the management of the data

representation of such models, in its native triple format (subject-predicate-object). SPARQL [19],

an RDF query language, enables retrieval and manipulation of data stored in triples.

The solid benefits of traditional relational databases include efficient storage/transactions and

retrieval, guarantee of validity of data and concurrent access (ACID properties), as well as data

security. But on the other hand, Distributed File Systems (or network file systems), such as the

Hadoop Distributed File System (HDFS) [20], enable multiple users using different machines to

share file storage and computational resources and provide performance scalability and

resilience. Non-relational databases, such as HBase [21] - a distributed key-value store on top

Hadoop- provide flexibility in terms of data schemas and scalability.

Based on the above, as well as considering the visualization requirements of DAP, its design will

be based on the following tools/libraries:

 Hadoop: A set of software libraries that provide a framework for the distributed

processing of massive data sets and computations across a network of computers [20].

It is based on the MapReduce programming model, designed to scale up from single to

thousands of machines, each offering local computation and storage, whilst hardware

failures are automatically handled by the framework. Hadoop has a rich ecosystem of

modules and applications (e.g. Hive, Spark, Mahout) that can be installed on top of or

alongside enabling: data manipulation operations, management of real-time data series,

machine learning operations etc. Hadoop platform: includes the storing component HDFS

and the processing components MapReduce and Yarn. In the case of RESOLVD project,

the key attributes of Hadoop have lead to its selection for the design of the DAP, concern

its scalability using commodity hardware, it’s out of the box fault tolerance, as well as its

support of for a variety data types by design.

 Hive: An open source SQL-based distributed warehouse system built on top of Hadoop

framework [22]. Hive has an SQL-like declarative query language called HiveQL,

providing an abstraction of the complexity of Hadoop MapReduce. HiveQL queries are

compiled into map-reduce jobs that are executed using Hadoop. Hive uses a meta-store

(relational DB) for storing information related to Hive tables (like their schema and

location. In the context of RESOLVD, Hive will be used for batch processing of the data

stored in DAP.

 Elasticsearch: An open-source search and analytics engine for data stored in non-

relational databases [23]. It provides good scalability, has near real-time search, and

supports multitenancy. Elasticsearch uses Lucene library to provide powerful full-text

search capabilities. By the use of Elasticsearch big volumes of data can quickly be

analyzed in near real time. Utilizing its extensive query language and by offering simple

REST based APIs and the use of schema-free documents it offers an easy way to index,

search, and query data. Elasticsearch for Apache Hadoop (ES-Hadoop) is a software

library that offers the combination of these two technologies, allowing a bi-directional flow

of data, which can be utilized for their interoperation.

 Kibana: An open-source, visualization tool designed as a plugin of Elasticsearch [24].

Kibana offers intuitive and interactive charts and allows the creation of dashboards [25]

41

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

and reports, which can be saved and easily accessed through a web-browser. Users can

create bar, line and scatter plots, or pie charts (see Figure 15) and maps on top of large

volumes of data - on top of content indexed on an Elasticsearch cluster.

Figure 15 Sample Kibana visualisations

In the context of the DAP, Hadoop will be utilized for as a long-term storage repository,

Elasticsearch will be used as short-term storage and analytics engine (KPIs calculation) and

Kibana as a visualization provider.

4.3. Architecture

A logical/functional decomposition of DAP is presented in Figure 16 and briefly explained below:

 The Analytics Service enables the execution of computations (e.g. KPI calculations) for

internal or external components;

 The Visualization Service enables the visualization of data stored in DAP;

 The Data Hub is responsible for receiving or collecting data from various sources (e.g.

MDMS, Weather Service etc.) and can be queried by internal components (e.g.

Visualization Service) or external systems (i.e. the ESB) to retrieve stored information;

 The Access control component ensures authorized access to the data stored as well as

the analytics and visualization services provided by the DAP.

Figure 16 DAP Component diagram

cmp ComponentDiagram

Data Analytics Platform

Analytics
Service

AnalyticsExec

AdminVisualization
Service

VisualisationAccess

ServiceAccess

Data Hub

ServiceAccess

DataAccess

Access
Control

42

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

4.4. Components Design

4.4.1. Analytics Service
This component is responsible for the execution of analytic computations, as well as for keeping

the repository of the code to be executed. The current requirements of the project indicate DAP

as the calculation engine for the KPI’s that will be utilized for the statistical analysis of impacts

based on grid operation actions. The component will provide an interface for the definition of the

KPI’s and for requesting their calculation. The Analytics Service will use Elasticsearch and Hive

at its core, using domain specific language to define queries.

The methods exposed by the Analytics Service are those externally visible through the Admin

Access and the AnalyticsExec interface, as presented in Table 25.

4.4.2. Visualization Service
This component provides visualisations of the data stored in the DAP, or computation of such

data, as provided by the Analytics Service. Such visualization are provided to the Operation

Applications as an embeddable artefact in the web tier. The Visualization Service will use Kibana

at its core, for visualizing data stored in Elasticsearch and Hadoop.

Kibana visualizes data queried from the Elasticsearch database, which can be presented either

as a single chart or a collection of more charts – as a Kibana dashboard. Individual dashboards

can be saved and re-executed based on the current state of the data, whilst accessibility is

provided by a unique URL.

Predefined visualizations patterns will be stored as templates and will be accessible through a

web interface. URLs created from Kibana for accessing or parameterizing a visualisation are quite

complex, hence an encapsulation will be provided by a mediator -in our case the ESB- creating a

‘user-friendly” web API for the clients (Operation Applications). Furthermore, the mediator will

enhance the direct access to the service with a security mechanism, which is quite useful, since

the inherent security capability of Kibana is not adequate and easy to integrate.

The methods exposed by the Visualization Service, are those that are externally visible through

the Visualisation Access interface, presented in Table 25.

4.4.3. Data Hub
This component will expose an API for data manipulation and retrieval. Data will be delivered to

DAP from various sources and stored into two storage modules: the short-term (Elasticsearch)

and the long-term (Hadoop). By using es-hadoop [26] add-on of Elasticsearch, an interface

allowing the simultaneous storage of data onto both Elasticsearch and Hadoop will be achieved.

Data provided to the Data Hub will be considered as validated data (from the original source),

whilst any transformations to the appropriate format will be handled by the ESB, through adapters.

Hence the component will only be responsible of retrieving and storing the data.

4.4.4. Access Control
Access Control component ensures authorized access to DAP. Most services are mediated by

the ESB, which is safeguarded by the AAA server. However the need for direct access of the

Visualisation Access interface or the Admin interface imposes the need for using this component,

which handles the integration of DAP with the AAA server, by invoking the relevant authorisation

and authentication services.

Table 24 presents the Access Control interface’s methods.

Table 24 Access Control interface

43

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Method Parameters Response Description

authenticate
Username
Password

Session ticket
Exposes the method of authentication of
the AAA server.

authorize
Session
ticket,

Service ID
Success Code

Exposes the method of authorization of
the AAA server. Returns an error code if
the authorization fails.

4.5. User Interface Design

The Visualisation Service will be able to present data stored in DAP as web pages and as

embeddable components into other applications. For this purpose, Kibana dashboards, a

collection of one or more charts, will be utilized. These UI elements are able to present the results

of queries on the underlying Elasticsearch database, whilst Kibana provides the ability to save

dashboards, which can be re-executed using the current state of the data. A unique URL is

provided for each dashboard saved, whilst during re-execution different parameters (e.g. time)

can be used as presented in §4.4.2.

The dashboards will be created by the administrator interface of Kibana and will be saved and

made accessible through an external service, using a visualisation identifier and providing the

necessary query parameters (e.g. time period, filters, aggregations).

Kibana supports a variety of chart types, whereby the visualised data can be either raw data or

the result of processing (e.g. summing, averaging) or aggregation (e.g. count, location, ordering).

Some basic chart types that are supported:

 Line Chart: Depicting data as lines;

 Pie Chart : A pie with different slices for each bucket identified in the data;

 Area Chart: Presenting a line chart with filled areas below the lines, whilst stacking,

overlapping of the areas is supported;

 Heatmap: A heatmap is a graphical representation of data in a two dimensioned coloured

matrix, where colouring indicates a range of values;

 Data Table: visualizes a table of the data.

A design of the user screens (dashboards), according to the requirements set in D1.2, is

presented in the Operation Applications section (see §6).

4.6. External Interfaces Design

Table 25 presents the external interfaces and underlying methods provided by DAP.

Table 25 DAP external interfaces

Interface
Name

Method Parameters Response Description

Data

Access

retrieve Data Query Data Payload
Retrieves a data set
based on the data query.

store
Type,

Data Payload
Success Code

Saves the provided data
set.

Visualisation
Access

retrieve

Visualisation
Identifier,

Query Params

Embeddable
iframe

Returns an interactive
embeddable visualisation.

44

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Analytics

Exec

execute
Process ID,

Process Params

Process

Result

Start execution of a
calculation process.

info Process ID Process Status
Retrieves the information
of a calculation process
and its current status.

Admin

Access

add

Process Name,

Process
Description,

Process Code,

Process ID
Stores calculation
process code.

delete Process ID Success Code
Deletes a calculation
process.

list -
List (ID, name,
description)

Lists all stored calculation
processes.

4.7. Data design

A description of the data structures provided to the DAP is presented in the table below, providing,

a short description, the format of the data and the update frequency.

Table 26 Data Types

No.
Information

Object Name
Short Description

Relative
Standards

Ingestion
Frequency

1
Consumption &
Generation Data

Energy demand and supply
measurement data per

customer for a specified time
period

CIM XML
Medium

(Once per day)

2
Consumption &
Generation Data

Request

Request for energy data
containing location (or grid ID)

and time period
CIM XML

Medium
(Multiple times per day)

3
Critical Event

Forecast

Voltage at each bus and current
through line with a detected

critical situation (e.g.
overcurrent)

CIM XML
Medium

(Multiple times per day)

4
Critical Event

Forecast Request

Request for forecast of critical
events, containing power flow

simulation, SM voltage and grid
configuration data

CIM XML
Medium

(Multiple times per day)

5
Critical events

analysis

Critical events (over/under-
voltages) list including the
magnitude, duration and

location (bus and/or line) of the
event.

CIM XML
Medium

(Multiple times per day)

6 Fault detection alert

Alert of fault detection specifying
fault type, component which

performed the detection (WAMS
or FDA), fault time (PMU data
timestamp used to detect the
fault), and fault localization

Proprietary
Medium

(Multiple times per day)

7
Fraud detection

alert

Alert of fraud specifying meter
identifier and

magnitude/likelihood of fraud
Proprietary

Medium
(Multiple times per day)

8
Generation and

Demand Forecast

Energy consumption and
generation forecast as a time
series, with model uncertainty,

CIM XML
Medium

(Multiple times per day)

45

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

at each specified bus and each
time-slot for the requested time

period

9
Generation and

Demand Forecast
Request

Request for calculating and
providing energy forecast for a
specified period and locations
(grid or model ID). The request

also contains last week's
consumption and generation
data, weather forecast for the

target time period, relevant
buses for energy forecast

CIM XML
Medium

(Multiple times per day)

10
Grid Configuration

and Status

Data that depict the current grid
topology and status (switchgear
status, lines or regions that are
offline due to maintenance, fault

etc.)

CIM XML
High

(Multiple times per
hour)

11
Grid Configuration

Data Request

Request for calculating and
provisioning grid configuration

data (switchgear status).
CIM XML

Medium
(Multiple times per day)

12
Grid Operation

Schedules

Set of grid operation schedules
to be considered by the DMS

with the estimated optimal
operation of each one. Each
schedule consists of a sub-

schedule for each grid actuator
(PED/switchgear)

CIM XML
(Medium

(Multiple times per day)

13 Grid Schedule

Grid Schedule containing
control commands for

Switchgear and
Charging/Discharging
Schedules for PEDs.

CIM XML
Medium

(Multiple times per day)

14
Grid Operation

Schedule Request

Request for a Grid operation
schedule by defining

optimization objective and
enclosing, grid information,

expected energy generation and
demand, grid actuators

information (battery status,
capacity, switchgear

connections, etc.)

CIM XML
Medium

(Multiple times per day)

15 Grid Topology
Grid topology containing

electrical features of the grid
(e.g. lines impedances)

CIM RDF/XML
Low

 (Upon change of
physical element)

16
Grid Topology

request
Request for acquiring the model

of a desired part of the grid.
CIM XML Low

17

Historical SM
voltage and
demand and

generation data

Historical data from SMs
containing voltage and demand

/ generation measurements.
CIM XML

Medium
(Multiple times per day)

18

Historical SM
voltage and
demand and

generation data
request

Request for Historical SM
voltage and demand and
generation data request

CIM XML
Medium

(Multiple times per day)

19
Historical weather

data

Weather data (temperature and
irradiance) at each time-slot for

the specified time period.
JSON Low

20
Historical weather

data request

Request for weather data
containing location and time
period and time granularity.

JSON
Medium

(Multiple times per day)

21 PED state
Describes the state of the PED,
detailing the PED ID, voltages,

current and power at the point of
CIM XML

High
(Multiple times per

hour)

46

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

connection, SoC of the set of
batteries (aggregated), alarms
and warnings, availability and

information related to the
activation of main functionalities

(such as Reactive
compensation, Harmonic

current mitigation).

22 PED state request
Request for PED state

(including PED ID)
CIM XML

Medium
(Multiple times per day)

23
Power Flow

Simulation request

Request containing energy
demand and supply and grid

configuration
CIM XML

Medium
(Multiple times per day)

24
Power Flow

Simulation Results

Results of power flow analysis
as a time series of

voltage/current values per
location

CIM XML
Medium

(Multiple times per day)

25 Voltage data
Voltage data measured by SMs
in the specified grid and for the

specified time period.
CIM XML

Medium
(Multiple times per day)

26
Voltage data

request
Request containing location (or

grid ID) and time period
CIM XML

Medium
(Multiple times per day)

27 Weather Forecast

Time series of weather forecast
data (temperature and

irradiance) for a specified time
period.

JSON
Medium

(A few times per day)

28
Weather Forecast

Request

Request for weather forecast
containing location, time period

and time granularity.
JSON

Medium
(Multiple times per day)

47

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

5. AAA Server

The AAA server is a security infrastructure offering authentication, authorization and accounting

functionality and enabling the control of user access to network resources, as well as tracking of

relevant activities.

The aim of the current design is to facilitate the integration of security mechanisms to services

provided in a network of services, mitigating the issue of security from the service provider to the

AAA server. The design supports the management of both individual services as well as

aggregated ones, supporting a hierarchy-based structure.

A conceptual visualisation of the operations of AAA server is presented in Figure 17. The AAA

server is encapsulated behind a mediator (in the context of the project the ESB) and is responsible

for authenticating clients, authorizing access to services (resources) as well as for keeping track

of the activity of clients for any malicious behaviour.

Figure 17 AAA Server high-level overview

Figure 18, presents the sequence of actions related to authenticating and accessing a service

protected by the AAA server. Upon successful authentication, the service requestor will be

provided with a session ticket. This ticket must be used in following communications as an

authentication and authorization means for accessing a service. When requesting a service, the

AAA server will validate whether the ticket is valid and whether the session is still active. If both

valid and active, the mediator will invoke the requested service and the result will be provided to

the service requestor. Otherwise, a relevant error code will be presented to the service requestor.

Such operation requires that the Mediator and the AAA server have a synchronized service

registry, where services are registered and which roles have accessibility to each services.

Therefore, the AAA will provide an interface for relevant operations, whilst the mediator will be

responsible for managing the service registry.

48

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 18 AAA Server: Sequence diagram

The internal logic of the AAA server is based on the following concepts:

 Client: A web-enabled entity that wants to access one or more services protected by the

AAA server;

 Node: A network entity (group of resources) that uses the AAA server to be protected

from unauthorized access. Consists of the node name (unique ID), type and one or more

Data Nodes;

 Data Node: A service (resource) that uses the AAA server to be protected from

unauthorized calls;

 Roles: Each role relates to one or more nodes and provides accessibility to the client(s)

related to it. A role can have a list of permitted addresses (IPs), allowing only those to

assume the specific role;

 Permission: Describes the relations (of accessibility) between roles and nodes.

In Figure 19 the login screen is presented, where the Administrator of the AAA server will need

to provide credential for accessing the application.

Figure 19 AAA Server UI: Login Screen

sd 1_Basic_Path

Mediator AAA Server Service
Provider

Service
Requestor

Session Ticket()

Result()

Authorise(ticket, resource id): String

Session Ticket()

Result()

[If valid ticket]:Request Service(ticket): Boolean

Authenticate()

Validation()

Request Service(ticket)

49

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 20 AAA Server UI: Menu

Figure 20 presents the menu of the application. The menu entails the basic concept presented

above, the Users of the AAA server (aka clients), the Nodes, the Roles and relevant Permissions.

The visualization of the Users screen, where the user is redirected when clicking on Users button,

is presented in Figure 21. A list of the details of the users is presented to the administration,

detailing the name, username, e-mail and type of user, as well as its status. By clicking on the

view button the administration is able to view other information about the user, such as when was

the last login, when was the user profile created or last updated and whether the user is registered

in any roles (among other). The administrator can edit the information of the user, whilst by using

the insert button, the administrator can add new user, providing the necessary information.

Figure 21 AAA Server UI: Clients view

In Figure 22, the Nodes registered in the application are presented. A list depicting the type of

node, its alias (unique) and name, as well as any related Data Nodes. The administrator has the

ability to delete a Node or insert a new one.

Figure 22 AAA Server UI: Nodes view

Figure 23, presents the Roles modelled in the system, detailing any restricted IPs, as well as the

users that are assigned this Role. The administrator is able to add or delete a Role (without

deleting the users) as well as to manage the restrictions and member of the Role.

Figure 23 AAA Server UI: Roles view

The different Permissions modelled in the application are presented in Figure 24 and Figure 25.

The first one presents for each Node Type, the different Roles that are registered for accessing

this resource. The administrator is able to add or delete a Role, or the Permission. The second

one, presents the list of roles, able to access a specific Data Node and enables the user to

add/remove Permissions.

50

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 24 AAA Server UI: Permissions view (Node Types)

Figure 25 AAA Server UI: Permissions view (Data Nodes)

With regards to the external interfaces provided by the AAA server, these are summarized in

Table 27.

Table 27 External interfaces provided by the AAA Server

Method Parameters Response Description

authenticate
User

credentials
Session ticket

The authentication function returns a
session ticket if the provided
credentials are correct. Otherwise,
an error code is provided.

authorize
Session ticket,
Resource ID

Boolean

Authorization function returns a
session ticket if the client (identified
by the session ticket) can access the
resource. Otherwise, an error code is
provided.

registerResouce
Resource ID,
List of Role ID

Boolean

This method can be used for adding
a new service in the registry along
with the list of role ids that have
access to this service.

updateResouce
Resource ID,
List of Role ID

Boolean

This method can be used for
updating an existing service in the
registry along with the role ids that
have access to this service.

deleteResouce Resource ID Boolean
This method can be used for deleting
a service from the registry.

getRoles -
List of Role IDs and

Description
Returns the description of the
existing roles in the AAA server.

getResources Role ID List of Resource ID
This method returns list of resources
accessible by a specific role.

51

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

6. Operation Applications

6.1. Overview

The Operation Applications provide the human-machine interface to enable the user (control

centre operator) to monitor and control the advanced grid operations developed in the project,

whilst on the other hand to communicate with the back-end systems for triggering these

operations. More specifically the following features are provided.

 User interface for management the business flows;

 Triggering of business processes (services);

 Ability to set alarms on the results of processes;

 Manual or automatic mode of execution of grid control actions (schedule);

 Presents the list of business context “events” (i.e. critical events, faults, requests for loss

reduction, self-healing and island management) of the application and their attributes;

 Visualizes the workflow model and information for further correlation, concerning:

 Events

 Consumption trends

 Power flow simulation results

 Suggested and implemented grid operation schedules;

 Provides a statistical analysis of :

 Events

 Grid operation schedules implemented

 Utilization of the storage (batteries);

The applications provide two levels of analysis:

 Historical events, which were projected, detected or triggered and occurred (or not) in the

past;

 Upcoming events, which are projected or planned to occur in the future.

Also correlation on whether grid operations schedules were proposed and implemented, or not,

for the above type of events will be provided.

The applications developed will be the following:

 Critical Event Prevention Application (CEPA): This application will detect and present

critical events related to the grid operation. The business workflow could be automatically

triggered in a periodic manner (using a scheduler) or upon change of initial conditions

(i.e. grid configuration modification, new energy forecast is available, PED schedule is

modified);

 Loss Reduction Application (LRA): This application will trigger the loss reduction

process and present the power losses reductions achieved. The business workflow could

be triggered manually by the operator, or automatically in a periodic manner (using a

scheduler);

 Self-Healing Application (SHA): Responsible for managing the self-healing process for

resolving a fault situation in the distribution grid. Its workflow is triggered by the fault

detection application.

 Island Power Management Application (IPMA): This application will manage the

operation of an islanded part of the grid, through the available resources (PEDs), ensuring

continuity of supply and power quality. Its workflow can be triggered manually, by an

operator.

52

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Detailed description of the requirement of the applications is presented in deliverable D1.2 [1].

6.2. Design Principles

Operation Applications will be developed as web-based applications, offering the required

features. Hence, the client - the user interface and client side logic – will run in a web browser

providing ease of accessibility to the user. The implementation environment will be the J2EE

platform, supporting the implementation of distributed multi-tier applications.

Furthermore, the following tools will be utilized/integrated in the final solution.

 Leaflet: An open source JavaScript library used to build web-mapping applications

known for its simplicity, performance and usability [27]. It supports different GIS formats,

such as GeoJSON, KML and WMS and takes advantage of features of HTML5 and

CSS3. In the context of this design, it is utilized for building interactive maps, utilizing the

GeoJSON format for data exchanges. GeoJSON - based on the JavaScript Object

Notation (JSON) - is an open standard format designed for representing simple

geographical features, along with their non-spatial attributes. The web application will

encapsulate the map UI and display it to the user. The user will be able to interact with

the map though the dedicated UI elements, which will be parameterized by the web

application, whilst visualized data (layers) will also be provided by the application.

 Kibana: As already presented (see §4.2), Kibana is an open-source visualization tool. A

visualization artefact provided by a Kibana instance deployed in the DAP (see chapter 0)

will be integrated in the web application, allowing the visualization of stored information

as well as user interaction with the graphs. All business process related data as well as

relevant legacy and external system/services data are stored in the DAP. Hence, this

design provides an easy, straightforward and service-based approach of visualization.

The web pages presented to the user will consist of widgets from different sources. As illustrated

in Figure 26, the web client will seamlessly integrate application code, with the artefacts of Leaflet

and Kibana.

Figure 26 Example of artefact integration in UI

6.3. Architecture

An architectural view of the web application is presented in Figure 27.

53

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 27 Operation application component view

The web architecture consists of the following components:

Table 28 Operation application components

Component Name Description

Client
A web browser able to communicate (locally or remotely) with
the web server.

Web Server

A machine where the web application is hosted.The design of
the web application is based on a classic three-tier architecture:

 The first tier is the presentation tier, which consists of the

UI components such as HTML, servlet, JSP or

JavaScript.

 The second tier is the business logic tier, which consists

of business workflows, business components and

business entities, which are based on the J2EE

standards.

 The third tier is the Data tier, which consists of Data

access components, Data helpers and pool managers in

order to achieve communication between the application

server and the database server.

It also includes cross-cutting component related to security and
communication:

 The security component is able to check for the authority

of any access to UI components, business logic

components or Data components.

 The communication component is able to control the

communication between layers.

Database Server
A repository of the data related to the operation of the
application.

54

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

External Services
Services integrated to the application (i.e. Kibana visualisation
services, ESB, AAA server, Leaflet plugins)

6.4. Internal Logic

The internal logic of the application is based on the following concepts:

 UI Components: The UI design has its basis on:

o Templates: Text files (e.g. XML) that describe the layout of every web page that

will appear on the client’s screen. The latter is divided logically in parts, which are

referred as visual components;

o XSL drivers: Files based on XSL metadata, which include directives about the

specific format of any visual component that will be presented on the client’s

screen;

All the above are part of the first tier, being orchestrated by the classes placed in the
second tier;

 Business Components: Java classes including algorithms for calculating, summarizing,

organizing and collecting any type of data. These components are able to connect with

data collectors or database helpers in order to eventually transfer data from/to the

components of the third tier, which is the Data layer;

 Business entities: Java classes having special features, inherited from other basic

classes. Following the Java Enterprise Edition standards, some business classes should

include all the Java Beans features by inheriting them from basic Bean classes;

 Business Workflows: Workflows imprinted either in java classes as program coding, or

in special drivers including specific directions, which should be translated in order to feed

decision makers classes;

 Data access components: These components enable communication with local or

remote databases. Their instantiation enables them to access different types of

databases based on the provided configuration;

 Data helpers: Java classes which are providing methods that will facilitate any action

related to database information access;

 Pool managers: These java classes provide all the necessary functionality for managing

and using data pools. Data pools are dedicated abstract components, able to better-

organize database connections.

6.5. Graphic User Interface Design

This section presents indicative use interface screens (though mock-ups) as well as an analysis

of the depicted information and the expected behaviour of the applications. Since the information

depicted among the different applications are quite similar, the list of provided view is not

exhaustive and aims to present the different type of interactive elements or workflow steps in the

applications.

In Figure 28, the main menu of the application is presented in a tabular view, presenting the four

main operations: Settings, Pending events, Event history and Statistical analysis. This menu will

be used across all applications, whilst event will represent the domain specific event for each

applications (i.e. critical event, loss reduction request, self-healing request, island power

management request).

55

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 28 Main Menu

Figure 29 presents a mock-up of the settings page of CEPA, where the user is able to set the

mode of operation of grid re-configuration selected. If manual mode is selected, upon execution

of the business flow and calculation of the optimal scheduled, the business process will pause.

The user must select one of the proposed schedules and resume the workflow. Otherwise, the

application will automatically select one and continue the flow. Furthermore, the user is able to

select the trigger event of the workflow execution, as well as alarm thresholds on critical events

detected and KPIs to be calculated and visualized in the workflow analysis.

Figure 29 CEPA: Settings view

On the other hand, Figure 30, presents a mock-up of the settings page of LRA, illustrating the

case where the user is able to manually control the execution of the workflow.

Figure 30 LRA: Settings view

In Figure 31, Figure 32 and Figure 33 different views of the upcoming critical events page are

presented for CEPA:

 The first one, presents the overall status of the upcoming events using charts concerning

status of schedule dispatch and its correlation with the severity of events.

 The second figure displayed a list of detected future critical event, detailing their

56

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

information: date/time, location, element affected, type, status and severity. Different

colours categorize among the different event types and, for example, magnitude/severity

of an issue. Furthermore, filtering and sorting of information is supported.

 Finally, the third figure depicts a map view of the critical event in the list. The map presents

the grid nodes (lines, transformers, switchgear, PEDs) on a geographical map. The

different colours highlight the level of severity of overload (congestion) of the lines. The

map is composed of different layers. With each layer providing the different types of

nodes. The nodes that are affected by critical events are highlighted and the user can

click on a node to see information about the event. Information presented in the map are

filtered by the list of critical events.

Figure 31 Upcoming critical events (Overview)

Figure 32 CEPA: Upcoming critical events (List view)

57

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 33 CEPA: Upcoming critical events (Map view)

Figure 34 and Figure 35 present different situations of the workflow associated to a schedule

dispatch of a critical event in CEPA. The use can access this view by clicking on a specific event

from the list. The user will be presented with the energy forecast at the specific node of the grid,

and the outcome of the critical event forecast, presenting both the estimated value of the grid

element and the nominal one. Furthermore, the schedule (to be) implemented or the list of

proposed schedules for the user to select (in manual mode) is presented. An interactive map

presents the impact of each schedule to the grid.

Figure 34 CEPA: Upcoming critical events (Pending Event Workflow: Schedule Approved)

58

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 35 CEPA: Upcoming critical events (Pending Event Workflow: Schedule Pending)

On the other hand, Figure 36 presents the workflow of a loss reduction event in LRA, with a

schedule pending for approval. One must notice the absence of the critical event forecast step.

Expect from LRA, the same workflow (but with different trigger events and optimization

parameters) is followed by IPMA and SHA as well.

Figure 37 visualises the Critical event history page of CEPA, presenting the list of past critical

events and relevant in formation in a similar manner as “Pending events” page. The user is able

to narrow down the scope of the analysis by selecting a specific time range. The user can add,

edit and view notes of a specific record in the table, using the dedicated button.

In Figure 38 the workflow of a past event of CEPA is presented, in a similar manner to pending

events (see Figure 34). In this case, the validation step is also presented, depicting the validation

measurement or KPI(s) for the event.

Figure 36 LRA: Upcoming critical events (Pending Event Workflow: Schedule Pending Approval)

59

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 37 CEPA: Critical event history (List view)

Figure 38 CEPA: Critical event history (Event view)

Figure 39, Figure 40 and Figure 41 present some views of the statistical analysis page of CEPA:

 In the first figure, three graphics present different types of analysis of critical events,

based on: status type and severity;

 The second one presents two maps analysing the critical events in terms of most frequent

event type and severity per location;

 The third one presents the frequency of occurrence of critical events (of any type) and

status of events per location.

The user is able to narrow down the scope of the analysis by selecting a specific time range.

60

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 39 CEPA: Statistical Analysis Overview

Figure 40 CEPA: Statistical Analysis map view (1 of 2)

In Figure 42 a list of critical events (for the defined time period) per element is presented for

CEPA, specifying the type and location and the frequency of occurrence of critical events, as well

as the most frequent occurring event.

Finally, Figure 43 presents the list of grid actuators i.e. PEDs and switchgears for CEPA, detailing

their location, number of control actions and most frequent critical event tackled.

61

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

Figure 41 CEPA: Statistical Analysis map view (2 of 2)

Figure 42 CEPA: Statistical Analysis grid elements

Figure 43 CEPA: Statistical Analysis PED and Switchgear

62

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

7. Conclusions

This report presented the results of the design process performed in the context of tasks T4.1

“Enterprise Service Bus” and T4.2 “Data Analytics Platform”, also leveraging the outcomes of

other deliverables of the project (D1.1, D1.2, D1.3 and D1.4). During this work, the main

architectural elements of the RESOLVD platform were analysed. A top-level view of the functional

decomposition of the platform was initially presented in order to provide the general context. Each

architectural component’s design was further analysed, providing different architectural views,

describing the interfaces, as well as the data design.

This work will serve as a basis for the final implementation of the components in the context of

T4.1 “Enterprise Service Bus”, T4.2 “Data Analytics Platform” and Task 4.4 “Service integration”.

63

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

References

[1] RESOLVD, D 1.2 - Functional and operational requirements.

[2] RESOLVD, D1.3 – Interoperability and Integration Analysis and Requirements.

[3] “https://www.omg.org/spec/UML”.

[4] “IEC 61968-1:2012 Application integration at electric utilities - System interfaces for
distribution management - Part 1: Interface architecture and general recommendations”.

[5] EPRI, “Common Information Model Primer, Third Edition,” 2015.

[6] [Online]. Available:
https://wiki.openelectrical.org/index.php?title=Common_Information_Model.

[7] IEC, “IEC 61968-100:2013 Application integration at electric utilities - System interfaces for
distribution management - Part 100: Implementation profiles”.

[8] [Online]. Available: http://camel.apache.org/architecture.html. [Accessed 09 2018].

[9] B. W. Gregor Hohpe, Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions, Addisson-Wesley.

[10] [Online]. Available: https://activemq.apache.org/.

[11] [Online]. Available: https://www.jbpm.org/.

[12] “https://www.omg.org/spec/BPMN/2.0/,” [Online].

[13] JBoss jBPM Team, “jBPM Documentation,” [Online]. Available:
http://docs.jboss.org/jbpm/release/7.0.0.Beta3/jbpm-docs/html_single/. [Accessed 09
2018].

[14] CIM University, “IEC 61968-100 Overview,” Austin, TX, 2011.

[15] [Online]. Available: https://en.wikipedia.org/wiki/Big_data.

[16] [Online]. Available: https://en.wikipedia.org/wiki/Triplestore.

[17] [Online]. Available: https://en.wikipedia.org/wiki/Graph_database.

[18] R. B. Melton et al., “Leveraging Standards to Create an Open Platform for the Development
of Advanced Distribution Applications,” IEEE Access, vol. vol. 6, pp. pp. 37361-37370, 2018.

[19] [Online]. Available: https://www.w3.org/TR/rdf-sparql-query/.

[20] [Online]. Available: https://hadoop.apache.org/.

[21] [Online]. Available: https://hbase.apache.org/.

[22] [Online]. Available: https://hive.apache.org/.

[23] [Online]. Available: https://www.elastic.co/products/elasticsearch.

[24] [Online]. Available: https://www.elastic.co/products/kibana.

64

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grand agreement No 773715

[25] [Online]. Available: https://www.elastic.co/guide/en/kibana/current/dashboard.html.

[26] [Online]. Available: https://www.elastic.co/products/hadoop.

[27] [Online]. Available: https://leafletjs.com/.

